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In 1906, Alois Alzheimer described for the first time a form of dementia that later became 

known as Alzheimer’s disease.1 At necropsy, he had observed that the brain of a 51-year-old 

woman with progressive cognitive decline was filled with –at that time still anonymous– amy-

loid plaques and neurofibrillary tangles. Since then, numerous investigators saw in patients 

with dementia the same pathological findings that Alzheimer had seen. Clinically, Alzheimer’s 

disease is recognized by a long period of progressive cognitive decline. Braak and Braak 

showed in the late eighties that the accumulation of plaques and tangles in the brain follows 

a predictable pattern over time that parallels this cognitive decline.2 In their now widely ac-

cepted staging system, they identify a long phase where the medial temporal lobe is the first 

area to be afflicted whereas only in the later disease stages the pathology involves the iso-

cortices. However, recent pathological studies show that brains of elderly patients, unlike the 

middle–aged patient that Alzheimer had observed, who in life receive a diagnosis of Alzhei-

mer’s disease have a rather mixed bag of brain pathology. Not only the traditionally recognized 

amyloid plaques and neurofibrillary tangles are observed but also cerebrovascular disease is 

found which could have contributed to the cognitive decline.3

The search for causes of Alzheimer’s disease is hampered by its long preclinical period and 

the pathological diversity that contribute to clinical symptoms of Alzheimer’s disease. Environ-

mental or physiological factors that are present at time of a clinical diagnosis of Alzheimer’s 

disease may not have effectuated the brain damage in the preclinical period. Furthermore, dif-

ferent key mechanisms could be involved in either the development of the specific Alzheimer 

pathology i.e. neurofibrillary tangles and amyloid plaques, or cerebrovascular disease such as 

lacunar infarcts and white matter disease. We took the approach of focusing on the preclini-

cal stages of the disease by making magnetic resonance imaging (MRI) of the brain in non-

demented elderly and assessing the extent of brain atrophy. The advantage of this approach 

is that brain atrophy on MRI, particularly atrophy of structures in the medial temporal lobe, 

is evident years before a clinical diagnosis of Alzheimer’s disease and specifically reflects 

neuronal loss and neurofibrillary tangles.4 By identifying causes of atrophy on MRI, which we 

consider a preclinical sign of Alzheimer’s disease, we hope to shed light on mechanisms by 

which Alzheimer’s disease develops. The studies described in this thesis formed part of the 

Rotterdam Scan Study, a large population-based cohort study among elderly who were at time 

of MRI free of clinical dementia. Vascular risk factors are increasingly recognized to contribute 

to the clinical syndrome of Alzheimer’s disease in late life,5 yet it is unclear whether this is only 

through induction of cerebrovascular disease that in itself causes cognitive decline or whether 

vascular factors also have more direct effects on brain atrophy. In chapter 2 of this thesis, the 

focus is on vascular risk factors in relation to brain atrophy on MRI. Chapter 3 is devoted to 

the endocrine factors plasma estradiol levels and genetic variation in the estrogen receptor 

α polymorphism. The potential of estrogen replacement therapy in preventing Alzheimer’s 
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disease has recently received a lot of attention and there is considerable controversy on the 

role of estrogens in the etiology of Alzheimer’s disease. Also in chapter 3, type 2 diabetes 

mellitus and insulin resistance are investigated as potential risk factors for brain atrophy on 

MRI. The functional significance and clinical correlates of atrophy on MRI are addressed in 

chapter 4. We examined whether atrophy on MRI was associated to memory performance, 

risk of dementia and depression. Finally, in chapter 5, the main findings in the context of cur-

rent knowledge on the etiology of Alzheimer’s disease, methodological aspects and sugges-

tions for future research are discussed.
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Chapter 2.1

Blood pressure and medial temporal lobe atrophy

Blood pressure may be associated to clinical Alzheimer’s disease (AD) in several ways. High 

blood pressure levels can lead to cerebrovascular damage, which contributes to cognitive 

decline in AD. However, high blood pressure may also trigger the development of AD pathol-

ogy, i.e. neurofibrillary tangles and amyloid plaques. In vivo, atrophy of the hippocampus and 

amygdala on MRI is a good and early indicator of AD pathology. We investigated the associa-

tion of blood pressure levels with hippocampal and amygdalar atrophy on MRI. Additionally, 

we examined the association of markers of large vessel (carotid atherosclerosis) and small 

vessel disease (white matter lesions on MRI) with atrophy of the hippocampus and amygdala. 

In 1995-1996, 511 non-demented elderly (60-90 year) underwent brain MRI. Blood pressure 

levels were assessed concurrently with MRI and 5 years before the MRI. A high diastolic 

blood pressure 5 years before MRI predicted more hippocampal atrophy in persons untreated 

for hypertension. Conversely, in persons treated for hypertension a low diastolic blood pres-

sure was related to atrophy. Small vessel disease, but not large vessel disease, coexisted 

with hippocampal and amygdalar atrophy. These results indicate that high blood pressure and 

markers of small vessel disease in the brain are associated with atrophy of structures affected 

by AD. A low blood pressure level may be either a cause or consequence of atrophy.
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Introduction

Although Alzheimer’s disease (AD) is originally considered to be a non-vascular disease, this 

view is challenged by observations that vascular factors contribute to the development of 

late-onset AD.1-3 In this respect, the most frequently investigated vascular factor is blood pres-

sure.4, 5 Long-term longitudinal studies have shown that a high blood pressure increases the 

risk of clinical AD.6-8 Yet cross-sectional studies9, 10 and studies with a shorter follow-up11, 12 

reported a low blood pressure in patients with AD. 

It is unclear whether and which structural brain changes could underlie the associations be-

tween blood pressure and clinical AD. High blood pressure levels can lead to cerebrovascular 

damage such as white matter lesions (WML) and small brain infarcts that contribute to cog-

nitive decline in a patient with clinical AD.13-15 Alternatively, more direct links between blood 

pressure and AD are suggested by the observation that persons with hypertension have in-

creased neurofibrillary tangles and brain atrophy at autopsy.16, 17 To explore the latter in vivo, 

we decided to study the relation between blood pressure and hippocampal and amygdalar 

atrophy on MRI in non-demented elderly. The hippocampus and amygdala are highly affected 

by amyloid plaques and neurofibrillary tangles even in the earliest stage of the development 

of Alzheimer’s disease.18 Histopathological studies confirm that neuronal loss, neurofibrillary 

tangles and amyloid plaques at autopsy are highly correlated to atrophy visible on MRI.19-21 If 

the association between blood pressure and clinical AD is (partly) mediated through effects 

on the development of Alzheimer neuropathology in the medial temporal lobe, one would 

expect to find an association between blood pressure levels and atrophy of the hippocampus 

and amygdala on MRI. We additionally examined whether markers of small vessel disease in 

the brain (WML) or large vessel disease (carotid atherosclerosis) are associated to atrophy of 

the hippocampus and amygdala on MRI and modifies the association between blood pressure 

and atrophy on MRI.

Methods

Participants

The Rotterdam Study is a large population-based cohort study in the Netherlands designed 

to investigate prevalence, incidence and determinants of diseases in the elderly.22 Baseline 

examinations were done in 1990 to 1993. In 1995 to 1996, we randomly selected 965 living 

members (60-90 years of age) of the cohort in strata of sex and age (5 years) for participation 

in the Rotterdam Scan Study designed to study age-related brain changes on MRI.1 As part of 

the eligibility criteria, we excluded from this selection people with dementia (n=17)23 or MRI 

contraindications (n=116). Thus, 832 persons were eligible and invited. Among these, 563 
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participants gave their written informed consent to participate in the study, which included 

undergoing an MRI scan of the brain (response rate: 68%). Complete MRI data was available 

for 511 participants.24 Participants were in general healthier than non-participants.25 The study 

protocol was approved by the medical ethics committee of the Erasmus Medical Center.

MRI procedures

Standard T1, T2 and proton-density weighted axial MR images and a custom-made three-

dimensional (3D) MRI sequence covering the whole brain were made using a 1.5 Tesla MR 

unit (VISION MR, Siemens, Erlangen, Germany). The MRI acquisition parameters have been 

described.24, 26 

MRI assessment of hippocampal and amygdalar volumes

We constructed a series of coronal brain slices (contiguous 1.5-mm slice thickness) from the 

3D MRI, aligned to be perpendicular to the long axis of the hippocampus. We manually traced 

the boundaries of the hippocampus and amygdala on both sides on each slice with a mouse-

driven cursor.24 The summed surface was multiplied by slice thickness to yield estimates of 

the hippocampal and amygdalar volume (ml). The left and right-sided volumes were summed 

to yield the total hippocampal and amygdalar volume. As a proxy for head size, we measured 

on the middle sagittal MRI slice the intracranial cross-sectional area.24 We corrected for head 

size differences across individuals by dividing the uncorrected volumes by the participant’s 

calculated head size area and subsequently multiplying this ratio by the average head size 

area (men and women separately).27 

Assessment of blood pressure and vasculopathy

At baseline and time of MRI we assessed blood pressure with a random zero sphygmoma-

nometer.28 Participants were asked to bring all prescribed medications to the research center 

where a physician recorded the use. At baseline and time of MRI, participants underwent 

ultrasonography of the carotid arteries.29 The presence of atherosclerotic plaques was deter-

mined at six locations: common carotid artery, carotid bifurcation, and internal carotid artery 

at the left and right side and summed (range 0-6). The intima-media thickness was measured 

by longitudinal two-dimensional ultrasound of the anterior and posterior wall of both com-

mon carotid arteries. We calculated the mean of these four locations. Cerebral WML on MRI 

were assessed on proton-density and T2 weighted axial MR images and were scored in the 

periventricular regions (range 0-9) and the subcortical regions (approximated volume).26 We 

defined a group with severe WML on MRI similar to previous analyses30 as having either a 

subcortical WML score or periventricular WML score in the upper quintile of the distribution. 

Brain infarcts were defined as focal hyperintensities on T2 weighted images, and, if present in 
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the white matter, with corresponding prominent hypointensity on T1 weighted images.31

Other measurements

Body mass index (BMI) was calculated as weight divided by the square of height. A physician 

assessed participants’ smoking habits with a structured questionnaire and we categorized 

this into never, former or current smoking. Serum total cholesterol and high-density lipopro-

tein (HDL) were determined with an automated enzymatic procedure.

Data analysis

We assessed the relation between blood pressure continuously and in categories at baseline 

or at time of MRI and atrophy with multiple linear regression. As preliminary analysis and pre-

vious studies on AD and cognitive impairment.7, 32-34 suggest differences in relations between 

persons with or without antihypertensive medication, we stratified for antihypertensive medi-

cation use. With multiple linear regression, we investigated the association between WML, 

carotid atherosclerosis and atrophy. Analyses were adjusted for age and sex and additionally 

for other cardiovascular factors. Finally, we repeated the analyses on blood pressure and atro-

phy in strata of severity of WML on MRI. Assumptions of the model were verified by residual 

diagnostics. 
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Results

Table 1 gives several characteristics of the study sample both at baseline and at time of 

MRI. 

Table 1. Characteristics of the study sample at baseline (1990-1993) and time of MRI (1995-1996)

Baseline 

(n=511)

Time of MRI

(n=511)

Age, year 68.8  ±  8.0 73.4 ± 8.0

Sex, % women 49.1 49.1

Cholesterol / HDL ratio 5.4 ± 1.8 4.9 ± 1.5

Current smoking, % 19.6 16.3

BMI, kg/m2 26.2 ± 3.4 26.3 ± 3.6

Diastolic blood pressure, mmHg 73.0 ± 10.8 76.5 ± 11.6

Systolic blood pressure, mmHg 136.5 ± 20.3 145.8 ± 20.3

Antihypertensive medication, % 30.3 38.9

Carotid plaques, score range 0-6 1.3 ± 1.5 1.6 ± 1.6

Intima-media thickness, mm 0.76 ± 0.14 0.87 ± 0.14

Periventricular WML on MRI, grade - 2.7 ± 2.2

Subcortical WML on MRI, ml - 1.80 ± 3.40

Infarcts on MRI, % - 28.0

Values are unadjusted means ± SD or percentages

People using antihypertensive medication at both baseline and follow-up had on average 

smaller hippocampal (age and sex adjusted difference –0.15, 95% CI –0.32 to 0.02, P=0.09) 

and amygdalar volumes (–0.20, 95% CI –0.34 to –0.06, P=0.005) compared to people without 

antihypertensive medication. A higher diastolic blood pressure at baseline in persons untreat-

ed for hypertension was related to smaller hippocampal volumes (Figure 1). Per SD increase 

in diastolic blood pressure at baseline, we found in persons untreated a 0.10 ml smaller hip-

pocampal volume (95% CI –0.19 to –0.02, P=0.02). Diastolic blood pressure at time of MRI 

was not associated with hippocampal or amygdalar volume in persons without antihyperten-

sive treatment (Figure 1). Conversely, in persons using antihypertensive medication, a lower 

diastolic blood pressure at time of MRI was related to smaller volumes on MRI, statistically 
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significant for the amygdala (Figure 1). Per SD increase in diastolic blood pressure at time of 

MRI, 0.10 ml (95% CI 0.00 to 0.20, P=0.05) larger amygdalar volumes were found. These as-

sociations did not change after adjusting for the cholesterol/HDL ratio, BMI or smoking. 

Figure 1. Association between diastolic blood pressure levels at baseline (upper panel) or at time of MRI 

(lower panel) and volumes of the hippocampus (left panel) and amygdala (right panel). Adjusted for age 

and sex and normalized to head size. *P<0.05 compared to diastolic blood pressure <70 mmHg

No associations were found with systolic blood pressure levels (Figure 2). 

People with more carotid atherosclerosis at either baseline (data not shown) or time of MRI 

did not have smaller volumes on MRI (Table 2). People with more WML had smaller hippo-

campal or amygdalar volumes (Table 2). This relation did not disappear after adjusting for blood 

pressure levels, antihypertensive medication use, cholesterol/HDL ratio, BMI and smoking. 

People with infarcts on MRI did not have significantly smaller hippocampal or amygdalar vol-
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umes (age and sex adjusted difference in hippocampal volume –0.10 ml (95% CI –0.27 to 0.07, 

P=0.24) and in amygdalar volume –0.01 ml (95% CI –0.15 to 0.13, P=0.89)). 

Figure 2. Association between systolic blood pressure levels at baseline (upper panel) or at time of MRI 

(lower panel) and volumes of the hippocampus (left panel) and amygdala (right panel). Adjusted for age 

and sex and normalized to head size

The association that we found in persons without antihypertensive treatment between a high 

diastolic blood pressure at baseline and hippocampal atrophy on MRI remained when exclu-

ding persons with severe WML on MRI (per SD increase in 0.13 ml smaller hippocampal vol-

ume (95% CI 0.03 to 0.23, P=0.02). The association between concurrent low diastolic blood 

pressure level and more atrophy in persons using antihypertensive medications was however 

restricted to people with coexistent severe WML on MRI (Table 3). 
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Table 2. Cross-sectional associations between markers of vasculopathy and hippocampal and amygdalar 

volumes on MRI (n=511)

Hippocampal volume (ml) Amygdalar volume (ml)

Estimate (95% CI) P Estimate (95% CI) P

Carotid atherosclerosis

IMT –0.01 (–0.09 ; 0.07) 0.84 –0.01 (–0.07 ; 0.06) 0.83

Carotid plaques –0.00 (–0.09 ; 0.08) 0.92 –0.01 (–0.07 ; 0.06) 0.83

WML on MRI

Periventricular -0.11 (-0.19 ; -0.03) 0.01 -0.05 (-0.12 ; 0.02) 0.14

Subcortical -0.09 (-0.17 ; -0.01) 0.02 -0.08 (-0.14;-0.02) 0.01

Values are adjusted regression coefficients (with 95% confidence interval (CI) and P-value) per SD in-

crease in atherosclerosis or white matter lesions (WML) on MRI. Adjustments were made for age and 

sex

Table 3. Cross-sectional association between diastolic blood pressure level and volumes of hippocampus 

and amygdala on MRI according to WML severity on MRI

Hippocampal volume (ml) Amygdalar volume (ml)

No antihypertensive medication (n=313) Estimate (95% CI) P Estimate (95% CI) P

Diastolic BP

No or moderate WML* (n=245) -0.01 (-0.12; 0.10) 0.83 0.06 (-0.02;0.15) 0.14

Severe WML* (n=68) 0.17 (-0.05;0.38) 0.12 0.06 (-0.11;0.22) 0.50

Antihypertensive medication (n=198) Estimate (95% CI) P Estimate (95% CI) P

Diastolic BP

No or moderate WML* (n=129) -0.05 (-0.20;0.10)† 0.47 0.04 (-0.08;0.16)† 0.52

Severe WML* (n=69) 0.20 (0.01;0.39) 0.04 0.19 (0.02;0.36) 0.03

Values are adjusted regression coefficients (with 95% confidence interval (CI) and P-value) per SD in-

crease in diastolic blood pressure level. * White matter lesions (WML) on MRI categorized according to 

upper quintile cut-off of distribution in either subcortical or periventricular WML.

†P-value of interaction term of diastolic blood pressure level and WML for hippocampus=0.03 amygda-

la=0.07
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Discussion

We found in this community cohort of non-demented elderly that a high diastolic blood pres-

sure in persons not treated for hypertension was associated with more hippocampal atrophy 

on MRI. Higher severity of WML coexisted with atrophy of the hippocampus and amygdala. 

Finally, in persons using antihypertensive medications a low diastolic blood pressure was 

related to more hippocampal and amygdalar atrophy. 

The clinical distinction between vascular dementia and AD is sometimes difficult hampering 

studies investigating vascular risk factors in relation to clinically diagnosed AD.35 In elderly 

people, dementia symptoms are mostly due to mixed disease i.e. both cerebrovascular dam-

age and AD pathology contribute to the cognitive symptoms.36 We had the opportunity to 

assess hippocampal and amygdalar atrophy on MRI that can be regarded as preclinical MRI 

markers of AD.19-21, 37 These assessments in vivo may help us clarifying whether vascular fac-

tors influence the AD pathology in the medial temporal lobe. However, we need to bear in 

mind that a small volume of the hippocampus or amygdala on MRI does not always reflect 

atrophy caused by incipient AD. For some persons a small regional brain volume will be innate 

or due to diseases other than AD. Future serial MRI studies can provide information to distin-

guish people with a high rate of brain volume loss due to AD pathology.38

The results of studies on the association between blood pressure and AD are determined by 

the time period between blood pressure level assessment and AD diagnosis.5, 39 Longitudinal 

population studies with a long follow-up have shown high blood pressure levels in people 

who develop clinically overt AD several years later.6-8 Especially in persons not using antihy-

pertensive medications, a higher blood pressure is a risk factor for clinical AD7 and cognitive 

impairment.32, 34 High blood pressure levels may lead to a spectrum of brain changes, which 

all could separately or in combination cause cognitive decline. Generalized brain atrophy,40-42 

WML,25, 41, 42 and infarcts on MRI31 are observed in persons with hypertension and are associ-

ated with cognitive decline and dementia.13 Another potential structural intermediate in the 

association between high blood pressure and clinical AD is damage to hippocampal neurones, 

as suggested by an autopsy study showing more neurofibrillary tangles and amyloid plaques 

in the hippocampus of persons with a high blood pressure.17 How exactly these pathological 

changes in the hippocampus develop due to high blood pressure is unclear. Long-standing 

hypertension and chronic brain hypoperfusion in rats may upregulate levels of nitric oxide in 

the hippocampus, lead to amyloid accumulation and memory loss.43 The coexistence of WML, 

which reflects microangiopathy,44 and atrophy of the hippocampus and amygdala on MRI has 

been reported before.45 Its coexistence may be explained by both having a similar aetiology 

such as high blood pressure that in our sample was strongly related to WML.25 Alternatively, 

as adjusting for blood pressure levels did not change the relation between WML and atrophy, 
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generalized microangiopathy may reduce cerebral blood flow to the hippocampus46 and in-

duce loss of hippocampal neurones.47 Of interest, infarcts on MRI were not associated with 

the degree of atrophy of the hippocampus and amygdala on MRI. The majority of infarcts on 

MRI are lacunar infarcts31 due to microangiopathy. Unlike WML however, they are caused by 

acute occlusions of single small vessels possibly not affecting blood flow to the medial tem-

poral lobe. Carotid atherosclerosis was not associated with atrophy of the hippocampus or 

amygdala suggesting that the association found between atherosclerosis and clinical AD48 is 

not through effects on the hippocampus or amygdala but purely through WML or infarcts.

Studies in which blood pressure is assessed shortly before or at time of diagnosis of AD 

showed patients to have lower blood pressure levels compared to controls.9-12, 49, 50 Two hy-

potheses have been put forward to explain these associations with low blood pressure: (1) a 

low blood pressure is a secondary phenomenon of the dementia process or (2) a low blood 

pressure primarily contributes to development of dementia. Regarding the first hypothesis, 

the hippocampus and amygdala have a role in blood pressure regulation51, 52 and atrophy of 

these structures due to AD pathology could result in a decrease of blood pressure level. How-

ever, this being true, we would expect similar associations between atrophy and low blood 

pressure levels in all persons whereas in our study the association was strongest in those 

using antihypertensive medication. This is in line with the stronger association found between 

a low blood pressure and AD in persons on antihypertensive treatment.11, 12, 50 According to 

the second hypothesis, a too low blood pressure level can be detrimental to the brain.53 Un-

der normal conditions, cerebral autoregulatory mechanisms will keep up adequate cerebral 

blood flow despite a low systemic blood pressure level.54 This is achieved by vasodilatation 

of the arterioles of the brain.55 In persons with chronic hypertension and microangiopathy56, 

57 the ability to vasodilate is reduced and a low systemic blood pressure might lead to hypo-

perfusion and ischemia of the brain particularly to the sensitive hippocampus and amygdala. 

Our finding that a low diastolic blood pressure level was particularly associated to atrophy in 

persons with antihypertensive medication (most likely with a history of chronic hypertension) 

and severe WML may fit this hypothesis.

To conclude, our findings support the idea that blood pressure has effects on atrophy of struc-

tures in the medial temporal lobe that have a central role in AD. However, as our study was 

cross-sectional we cannot infer causality of the associations. Prospective studies are needed 

to confirm or reject the associations we found.
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Chapter 2.2

Blood pressure and global brain atrophy

The relation between blood pressure level and degree of global brain atrophy is equivocal. We 

evaluated past and present blood pressure levels and change in blood pressure over 20 years 

in relation to the degree of cortical atrophy on magnetic resonance imaging (MRI). In 1995-

1996, we measured blood pressure and performed MRI in 1,077 non-demented elderly (age 

60-90 years). For 513 of these, we had information on a blood pressure level 20 years before. 

The degree of cortical atrophy was semi-quantitatively scored (range 0-15). In late life, a high 

(≥90 mmHg) and low (<65 mmHg) diastolic blood pressure were associated with more corti-

cal atrophy than a diastolic blood pressure level between 65-74 mmHg (adjusted difference 

0.60 units (95% confidence interval (CI), 0.18-1.02) and 0.77 units (0.28-1.25), respectively). 

Persons whose diastolic blood pressure had declined more than 10 mmHg over 20 years had 

more cortical atrophy than those with stable blood pressure levels (adjusted difference 0.53 

units, 0.05-1.02). Both high and declining diastolic blood pressure levels are associated with 

more global brain atrophy on MRI.
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Introduction

Global brain atrophy is a common finding on magnetic resonance imaging (MRI) scans of 

elderly persons. Elderly with more pronounced brain atrophy perform worse on neuropsycho-

logical testing,1 and may even be at increased risk to develop Alzheimer’s disease.2 Besides 

age, no definite risk factor for the development of severe brain atrophy has yet been identified. 

High blood pressure levels in mid or late life have been suggested to increase the degree of 

brain atrophy in later life,3, 4 but other observational studies reported that a low blood pressure 

level or a decline in blood pressure are associated with severe brain atrophy.5, 6 In a popula-

tion-based sample of older people we investigated the relation between blood pressure levels 

and degree of brain atrophy on MRI. We investigated blood pressure levels 20 years before 

MRI, change in blood pressure over time, and concurrent blood pressure level in relation to 

the degree of brain atrophy on MRI. 

Methods

Study sample

This study is based on data from the Rotterdam Scan Study, which was designed to investi-

gate determinants and consequences of brain abnormalities on MRI in the elderly.7 In 1995-

1996, 1,904 subjects aged 60-90 years were randomly selected in strata of age (5 years) and 

sex from two population cohort studies.8, 9 We excluded 187 subjects who were demented, 

blind or had MRI contraindications at time of selection. Of the 1,717 eligible non-demented 

subjects, complete information including a cerebral MRI scan was obtained in 1,077 who 

gave written informed consent (participation rate 63%, mean age 72.2 years, 52% women). 

Subjects who consented to the MRI examination were on average younger and healthier than 

subjects who refused the MRI examination.10 In 513 subjects, originating from one of the co-

horts (participation rate 59 %),8 we had information on a blood pressure level 20 years before 

MRI (measured from 1975-1978; age at that time between 40 and 70 years). The Medical 

Ethics Committee of Erasmus Medical Center, the Netherlands, approved the study. 

Measurements

Measurements were done similarly at both examinations. Blood pressure was measured 

twice in a seated position with a random-zero sphygmomanometer. We used the average of 

these two measurements. In six subjects with MRI, we had no information on concurrent 

blood pressure level. Subjects showed prescribed medications to a physician who coded 

these according to the Anatomic-Therapeutic-Chemical index. Antihypertensive medications 

were medications falling into classification codes C02, C03 and C07. Diabetes mellitus was 



Blood pressure and global brain atrophy

23

considered present when subjects reported use of oral antidiabetic medication or insulin 

(classification code A10). A physician asked about smoking habits (current, never or former) 

and quantified this as pack-years of cigarettes smoked (=number of cigarettes per day X year 

of smoking/20) (pack-years could only be quantified at time of MRI). Body mass index (BMI) 

was calculated as weight divided by height square.

 

MRI procedures

An axial T1, T2 and proton density weighted brain MRI scan was made with 1.5-Tesla scanners 

(Gyroscan, Philips NT, Best, The Netherlands or VISION MR, Siemens, Erlangen, Germany).10 

Slice thickness was 5 or 6 mm with an interslice gap of 20 %. Images were optimized on the 

scanner screen and printed on laser hard copies. The extent of cortical atrophy was scored 

blinded to all clinical characteristics on a four point rating scale based on the size of the gyri 

and sulci from 0 (no cortical atrophy) to 3 (severe cortical atrophy) at five regions (frontal, pa-

rietal, temporal and occipital lobes and the insular region) with use of reference scans (Figure 

1). 

Figure 1. Axial brain slices at the level of the basal ganglia showing brains with sum score of cortical 

atrophy of A=0, B=5, C=10, D=15. Cortical atrophy was scored from 0-3 at the frontal, parietal, temporal 

and occipital lobes and the insular region
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The sum of these five regions (0-15) was calculated. Two experienced raters scored all scans 

for cortical atrophy independent of each other. When the raters differed more than one point 

in any of the five regions a consensus reading was held, otherwise the mean score was calcu-

lated. Intra and interrater studies based on the first 200 scans showed good reproducibility for 

scoring cortical atrophy (intrarater weighted kappa 0.82 and interrater weighted kappa 0.81). 

White matter lesions were scored in periventricular (grade 0-9) and subcortical white matter 

regions (approximated volume) on the proton density scans.10 White matter lesions had to be 

hyperintense on the proton density and T2 weighted images, without prominent hypointen-

sity on the T1 weighted images. We defined infarcts as focal hyperintensities on T2 weighted 

images.11 Infarcts in the white matter also had to have corresponding hypointensities on T1 

weighted images, in order to distinguish them from white matter lesions.

Data analysis

Age and sex adjusted linear regression was used to quantify the relation between several 

characteristics and atrophy. We used analysis of covariance (ANCOVA) to calculate adjusted 

means of cortical atrophy in blood pressure level categories. This was done for blood pressure 

levels 20 years before MRI, change in blood pressure level, and concurrent blood pressure 

level. When the ANCOVA suggested a linear association between the blood pressure variable 

and atrophy, we performed a multivariate linear model to calculate the increase in cortical 

atrophy units per 10 mmHg increase in blood pressure level. A possible U-shaped association 

between blood pressure measures and atrophy was evaluated by adding the quadratic term 

of the blood pressure variable to the linear model. We then report the P-value of the regres-

sion coefficient of the quadratic term. All analyses were adjusted for age, sex, and cigarette 

smoking (at examination in 1975-1978: smoking status; current, former, never; concurrent 

with MRI: pack-years of cigarette smoking). Additional adjustments were made for presence 

of diabetes, BMI, and white matter lesions. We evaluated whether relations differed accor-

ding to antihypertensive medication use through stratified analyses. In addition, all analyses 

were repeated with the different regions of atrophy as dependent variables separately. Finally, 

we repeated all analyses excluding subjects with an infarct on MRI.

For missing data on categorical covariates, we used a missing indicator, whereas for missing 

data on continuous covariates we used the median value of the respective value as calculated 

from the total sample. Data were missing on cigarette smoking (n=24), diabetes (n=3), body 

mass index (n=3), and subcortical white matter lesions (n=4). All analyses were followed by 

residual analyses to confirm assumptions of the model.



Blood pressure and global brain atrophy

25

Results

Table 1 shows characteristics of the total study sample at time of MRI and characteristics of 

the part with additional examinations 20 years before MRI.

Table 1. Characteristics of the total study sample in 1995-1996 (at time of MRI scan) and of subjects with 

additional examinations in 1975-1978

Total study sample Examinations in

1995-1996 (n=1077) 1975-1978 (n=513)

Age, years 72 ± 7 51 ± 7 

Sex, % women 52 53

Systolic blood pressure (mmHg) 147.3 ± 21.6 131.4 ± 17.0 

Diastolic blood pressure (mmHg) 78.7 ± 11.7 81.3 ± 10.9 

Antihypertensive medication, % 35 15

Smoking cigarettes, % current 16 37

Prevalent diabetes mellitus, % 6 1

Body mass index (kg/m2) 26.7 ± 3.6 25.0 ± 3.0 

Subcortical white matter lesions (ml) 1.4 ± 2.9 -

Periventricular white matter lesions, grade 2.4 ± 2.2 -

Infarcts on MRI, % 24 -

Cortical atrophy, range 0-15 5.56 ± 2.86 -

Values are unadjusted means ±standard deviation or percentages unless otherwise specified

 

The degree of cortical atrophy was significantly higher with increasing age (0.22 units per year 

(95% confidence interval (CI), 0.20 to 0.24) and more pronounced in men than in women (sex 

difference 0.90 units (95% CI, 0.56 to 1.24)). Users of antihypertensive medications in late life, 

but not in mid life, had more pronounced cortical atrophy (age- and sex-adjusted difference 

0.52 units (95% CI, 0.23 to 0.82), and –0.26 units (95% CI, –0.75 to 0.22), respectively). 

Figure 2 shows cortical atrophy according to concurrent blood pressure level. Subjects with 

a high diastolic blood pressure level (85-90 mmHg and above 90 mmHg) had adjusted 0.48 

units (95% CI, 0.01 to 0.94) and 0.60 units (0.18 to 1.02) more cortical atrophy than subjects 

with a diastolic blood pressure level between 65 and 74 mmHg. In addition, subjects with a 

diastolic blood pressure level less than 65 mmHg had adjusted 0.77 units (95% CI, 0.28 to 
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1.25) more cortical atrophy than subjects with a diastolic blood pressure level between 65 and 

74 mmHg. This U-shaped association between diastolic blood pressure level and degree of 

cortical atrophy was statistically significant (P of quadratic term = 0.02), and remained after 

additional adjustments for diabetes, BMI, and white matter lesions (P of quadratic term = 

0.05). The association was similar for users and non-users of antihypertensive medications. 

Concurrent systolic blood pressure level was not related to the degree of cortical atrophy 

(Figure 2) (per 10 mmHg a decrease of –0.02 units (95% CI, –0.09 to 0.04)).
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Figure 2. Cortical atrophy according to concurrent blood pressure levels. Values are adjusted means 

(+standard error) of cortical atrophy. Adjusted for age, sex, and pack-years of cigarette smoking. Numbers 

in the respective categories were for diastolic blood pressure 122, 271, 350, 140, 188 and for systolic 

blood pressure 99, 215, 186, 268, 303.*Adjusted mean in blood pressure level category differs from ad-

justed mean in diastolic blood pressure level category 65-74 mmHg P<0.05

Higher diastolic blood pressure levels 20 years before MRI predicted more cortical atrophy 

in later life in subjects without antihypertensive medication (n=434) (per 10 mmHg increase 

in diastolic blood pressure 0.17 units (95% CI, 0.00 to 0.34), but not in subjects with antihy-

pertensive medication (n=79) –0.03 units (95% CI, –0.44 to 0.38). The association in subjects 

without antihypertensive medication weakened after adjusting for diabetes, BMI, and white 

matter lesions (per 10 mmHg increase in diastolic blood pressure 0.15 units (95% CI, –0.03 to 

0.33). The number of subjects without antihypertensive medication allowed us to examine the 

association between previous diastolic blood pressure and atrophy in age categories of 40-50, 

50-60 and 60-70. The association was strongest in the youngest (per 10 mmHg increase in 

diastolic blood pressure respectively 0.26 units (95% CI, 0.05 to 0.48); 0.12 (95% CI, –0.17 to 

0.42); 0.13 (95% CI, –0.68 to 0.95). Systolic blood pressure levels 20 years before MRI were 
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not associated with the degree of cortical atrophy in later life (data not shown). 

On average, subjects declined very little in diastolic blood pressure over 20 years (change –0.2 

mmHg). A steeper decline in diastolic blood pressure was associated with significantly more 

cortical atrophy compared to a stable blood pressure level over time (Figure 3). Persons who 

had experienced a decline of more than 10 mmHg in diastolic blood pressure level had 0.53 

units (95% CI, 0.05 to 1.02) more cortical atrophy than persons with a stable blood pressure 

level over time (change between –5 and +5 mmHg). 
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Figure 3. Cortical atrophy according to change in blood pressure level over 20 years time. Values are 

adjusted means (+standard error) of cortical atrophy. Adjusted for age, sex, and pack-years of cigarette 

smoking. Numbers in the respective categories were for diastolic blood pressure change 115, 81, 123, 

76, 112 and for systolic blood pressure change 65, 120, 188, 60, 74.*Adjusted mean in blood pressure 

change category differs from adjusted mean in diastolic blood pressure level change from –5 to 5 mmHg 

P<0.05 

The decliners with ensuing late life diastolic blood pressure level less than 65 mmHg (n=27) 

had 1.27 units (95% CI, 0.45 to 2.13) more cortical atrophy than decliners with ensuing late life 

diastolic blood pressure level above 65 mmHg (n=88). Likewise, persons with a low diastolic 

blood pressure in late life who had experienced a decline of more than 10 mmHg (n=27) had 

1.69 units (95% CI, -0.04 to 3.43) more cortical atrophy compared to persons with a low di-

astolic blood pressure without a preceding decline of more than 10 mmHg (n=7). The associa-

tion between a decline of more than 10 mmHg in diastolic blood pressure and more cortical 

atrophy was present in persons without antihypertensive medications at anytime (n=336), 

(0.80 units (95% CI, 0.18 to 1.42)), whereas the association in chronic antihypertensive users 

was unclear due to small numbers (n=56). In persons who used antihypertensive medica-
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tion only at late life (n=98), the decliners had 0.34 units (95% CI, -0.84 to 1.51) more cortical 

atrophy compared to subjects with a stable blood pressure level. There were only 23 subjects 

who used antihypertensive medication in earlier life without using antihypertensive medica-

tion in later life. An increase in diastolic blood pressure of more than 10 mmHg was also asso-

ciated with more cortical atrophy (Figure 3), but the apparent U-shaped association between 

diastolic blood pressure change and atrophy was not statistically significant (P of quadratic 

term = 0.14). The associations did not change by additional adjustments for diabetes, BMI, 

and white matter lesions. Systolic blood pressure change over 20 years was not associated 

with the degree of cortical atrophy (Figure 3). 

When analyzing the relation between blood pressure and the separate regions in which we 

measured cortical atrophy, no differential pattern emerged for any of the relations between 

blood pressure and atrophy. Finally, excluding subjects with an infarct on MRI did not materi-

ally change any of the results.

Discussion

The main finding of this study is that in a population of non-demented elderly a high diastolic 

blood pressure level 20 years before MRI predicted more pronounced cortical atrophy. Sec-

ond, both concurrent high and low diastolic blood pressure levels were associated with more 

atrophy. Finally, subjects who had experienced a steep decline in diastolic blood over a 20-

year period, and had subsequently a low diastolic blood pressure at late life, had more cortical 

atrophy than subjects with a stable blood pressure level over time. These associations were 

independent of other vascular risk factors, cerebral white matter lesions or infarcts on MRI.

Some limitations of this study have to be considered. First, people had to be alive to be in-

cluded in our study. Subjects with either very low or high blood pressure levels earlier in life 

may have preferentially died and hence could have been underrepresented in our sample. 

Most likely, this led us to underestimate the association between previous blood pressure 

levels or change in blood pressure level and brain atrophy. Some evidence that this played a 

role comes from our observation that higher previous blood pressure levels were associated 

with more atrophy especially in the youngest for whom higher blood pressure levels will not 

have a large impact on mortality rate. A second limitation is that our rating of brain atrophy 

is rather crude compared to that of others who used quantitative, yet time-consuming, tech-

niques.2 However, this crude rating should decrease the possibility of finding any association. 

Finally, we only had single measurements of blood pressure. Due to regression dilution this 

also would lead us to underestimate the effect of blood pressure on atrophy.

Our finding that previous or later life high blood pressure levels are associated with more 

global brain atrophy in late life is in concordance with observations in clinical hypertensive pa-
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tients12-14 and population studies.3, 4 As previously reported in our sample, high blood pressure 

levels were associated with severe white matter lesions and infarcts.11, 15 Given the fact that 

white matter lesions, infarcts and severe global brain atrophy commonly occur in the same 

brain,16 we considered that the relation between high blood pressure and atrophy could be 

due to the relation between blood pressure and other cerebrovascular pathology. However, 

adjusting for the severity of white matter lesions or excluding those with infarcts did not 

change the association between blood pressure and atrophy, suggesting that blood pres-

sure is independently associated with atrophy. Biological support of an association between 

high blood pressure and atrophy comes from a pathological study that showed higher mid 

life blood pressure levels to be associated with more neurofibrillary tangles in the cortex and 

brain atrophy at death.17 However, this study was done in Honolulu comprising a different 

ethnical population under other environmental factors. Replication needs to be done in a Cau-

casian population such as ours. Another pathological study showed that elderly who died with 

hypertension had more senile plaques in the cortex than those without hypertension.18

Besides a high blood pressure level, we also found dropping blood pressure and lower con-

current blood pressure levels to be associated with more global brain atrophy, as was also 

reported by others.5, 6 From our sample with examinations 20 years before MRI, we observed 

that most of the subjects with low blood pressure levels in late life came from higher blood 

pressure levels earlier in life. Hence it may be that these previous higher blood pressure levels 

were responsible for more global brain atrophy at late life. However, it seems unlikely that 

this explains the whole association between a low or dropping blood pressure level and more 

global brain atrophy, given our observation that higher previous blood pressure levels were 

not very strongly associated with more global brain atrophy at late life. We can speculate on 

two interpretations of the association between low or dropping diastolic blood pressure levels 

and atrophy. First, a decline in blood pressure level over time may lead to mild ischemia of the 

brain.19, 20 In healthy subjects, a low systemic blood pressure level will not have a large impact 

on cerebral blood flow because the brain has the ability to keep cerebral blood flow constant 

by cerebral autoregulation.21 However, in subjects with impaired cerebral autoregulation, the 

lower limit of blood pressure at which cerebral autoregulation still functions is shifted towards 

a higher blood pressure level,22 and subsequently a low systemic blood pressure level may 

be inadequate for healthy brain perfusion.19, 23 As a second interpretation for the association 

between a drop in blood pressure and atrophy, one might speculate that atrophy of the brain, 

once it is severe enough, causes a decline in blood pressure levels. The central nervous sys-

tem is involved in blood pressure regulation24, 25 and in the very elderly it was observed that 

those with more frontal or insular atrophy had on average lower blood pressure levels.5 Our 

results did however not indicate a differential association between a low blood pressure level 

and atrophy in specific regions. The association between low blood pressure and atrophy in 



Chapter 2.2

30

this non-demented population fit findings in patients with early Alzheimer’s disease in which 

blood pressure levels drop, possibly due to an increase in atrophy.26, 27

In summary, we found that in a non-demented population both a high and a declining blood 

pressure predicted more global brain atrophy on MRI. Prospective studies using several 

measurements of atrophy and blood pressure are required to unravel the chronology of these 

associations. 

References

1. Schmidt R, Fazekas F, Koch M, et al. Magnetic resonance imaging cerebral abnormalities and  

 neuropsychologic test performance in elderly hypertensive subjects. A case-control study. Arch  

 Neurol 1995; 52:905-10.

2. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and pro- 

 gression of Alzheimer’s disease with voxel- compression mapping of serial magnetic reso- 

 nance images. Lancet 2001; 358:201-5.

3. Manolio TA, Kronmal RA, Burke GL, et al. Magnetic resonance abnormalities and cardiovascular  

 disease in older adults. The Cardiovascular Health Study. Stroke 1994; 25:318-27.

4. DeCarli C, Miller BL, Swan GE, et al. Predictors of Brain Morphology for the Men of the NHLBI  

 Twin Study. Stroke 1999; 30:529-536.

5. Skoog I, Andreasson LA, Landahl S, Lernfelt B. A population-based study on blood pressure and  

 brain atrophy in 85-year- olds. Hypertension 1998; 32:404-9.

6. Swan GE, DeCarli C, Miller BL, Reed T, Wolf PA, Carmelli D. Biobehavioral characteristics of  

 nondemented older adults with subclinical brain atrophy. Neurology 2000; 54:2108-14.

7. Breteler MMB. Vascular involvement in cognitive decline and dementia. Epidemiologic evi- 

 dence from the Rotterdam Study and the Rotterdam Scan Study. Ann N Y Acad Sci 2000;  

 903:457-65.

8. Hofman A, Laar van A, Klein F, Valkenburg HA. Coffee and cholesterol (letter). New England  

 Journal of Medicine 1983; 309:1248-1249.

9. Hofman A, Grobbee DE, de Jong PTVM, van den Ouweland FA. Determinants of disease and  

 disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 1991; 7:403-22.

10. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive func- 

 tion: the Rotterdam Scan Study. Ann Neurol 2000; 47:145-51.

11. Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MMB. Prevalence and risk factors  

 of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 2002; 33:21-5.

12. Salerno JA, Murphy DGM, Horwitz B, et al. Brain atrophy in hypertension. A volumetric mag- 

 netic resonance imaging study. Hypertension 1992; 20:340-8.



Blood pressure and global brain atrophy

31

13. Hatazawa J, Yamaguchi T, Ito M, Yamaura H, Matsuzawa T. Association of hypertension with  

 increased atrophy of brain matter in the elderly. J Am Geriatr Soc 1984; 32:370-4.

14. Strassburger TL, Lee HC, Daly EM, et al. Interactive effects of age and hypertension on vol- 

 umes of brain structures. Stroke 1997; 28:1410-7.

15. de Leeuw FE, de Groot JC, Oudkerk M, et al. A follow-up study of blood pressure and cerebral  

 white matter lesions. Ann Neurol 1999; 46:827-33.

16. Meguro K, Yamaguchi T, Hishinuma T, et al. Periventricular hyperintensity on magnetic reso- 

 nance imaging correlated with brain ageing and atrophy. Neuroradiology 1993; 35:125-9.

17. Petrovitch H, White LR, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofi- 

 brillary tangles, and brain weight at death: the HAAS. Neurobiol Aging 2000; 21:57-62.

18. Sparks DL, Scheff SW, Liu H, Landers TM, Coyne CM, Hunsaker JC, 3rd. Increased incidence of  

 neurofibrillary tangles (NFT) in non-demented individuals with hypertension. J Neurol Sci 1995;  

 131:162-9.

19. de la Torre JC. Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of  

 Alzheimer’s pathogenesis. Neurobiol Aging 2000; 21:331-42.

20. Sabri O, Ringelstein EB, Hellwig D, et al. Neuropsychological Impairment Correlates With Hy- 

 poperfusion and Hypometabolism but Not With Severity of White Matter Lesions on MRI in  

 Patients With Cerebral Microangiopathy. Stroke 1999; 30:556-566.

21. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab  

 Rev 1990; 2:161-92.

22. Moody DM, Santamore WP, Bell MA. Does tortuosity in cerebral arterioles impair down-au- 

 toregulation in hypertensives and elderly normotensives? A hypothesis and computer model.  

 Clin Neurosurg 1991; 37:372-87.

23. Mentis MJ, Salerno J, Horwitz B, et al. Reduction of functional neuronal connectivity in long- 

 term treated hypertension. Stroke 1994; 25:601-7.

24. Chalmer J, Arnolda L, Llewellyn-Smith I, Minson J, Pilowsky P. Central nervous control of blood  

 pressure. In: Swales JD, editor. Textbook of Hypertension. Oxford: Blackwell Scientific Publica- 

 tions, 1994:409-26.

25. Burke WJ, Coronado PG, Schmitt CA, Gillespie KM, Chung HD. Blood pressure regulation in  

 Alzheimer’s disease. J Auton Nerv Syst 1994; 48:65-71.

26. Skoog I, Lernfelt B, Landahl S, et al. 15-year longitudinal study of blood pressure and dementia.  

 Lancet 1996; 347:1141-5.

27. Ruitenberg A, Skoog I, Ott A, et al. Blood pressure and risk of dementia: results from the Rot- 

 terdam study and the Gothenburg H-70 Study. Dement Geriatr Cogn Disord 2001; 12:33-9.





33

Chapter 2.3

Homocysteine and brain atrophy

Patients with Alzheimer’s disease have higher plasma homocysteine levels than controls but 

it is uncertain whether higher plasma homocysteine levels are involved in the early patho-

genesis of the disease. Hippocampal, amygdalar and global brain atrophy on brain magnetic 

resonance imaging (MRI) have been proposed as early markers of Alzheimer’s disease. In 

the Rotterdam Scan Study, a population-based study of age-related brain changes in 1,077 

non-demented people aged 60 to 90 years, we investigated the association between plasma 

homocysteine levels and severity of hippocampal, amygdalar and global brain atrophy on MRI. 

We used axial T1 weighted MR images to visualise global cortical brain atrophy (measured 

semi-quantitatively; range 0-15) and a 3D HASTE (half-Fourier acquisition single-shot turbo 

spin echo) sequence in 511 participants to measure hippocampal and amygdalar volumes. 

We had non-fasting plasma homocysteine levels in 1,031 of the participants and in 505 of 

the participants with hippocampal and amygdalar volumes. Individuals with higher plasma 

homocysteine levels had on average more cortical atrophy [0.23 units (95% CI 0.07 to 0.38 

units) per standard deviation increase in plasma homocysteine levels] and more hippocam-

pal atrophy [difference in left hippocampal volume –0.05 ml (95% CI –0.09 to –0.01) and in 

right hippocampal volume –0.03 ml (95% CI –0.07 to 0.01) per standard deviation increase in 

plasma homocysteine levels]. No association was observed between plasma homocysteine 

levels and amygdalar atrophy. These results support the hypothesis that higher plasma homo-

cysteine levels are associated with more atrophy of the hippocampus and cortical regions in 

elderly at risk of Alzheimer’s disease.
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Introduction

Patients with Alzheimer’s disease or cognitive impairment have higher plasma homocysteine 

levels than cognitively unimpaired older subjects.1-3 Recently, a high plasma homocysteine 

level was shown to be a strong, independent risk factor for the development of Alzheimer’s 

disease.4 Elevated plasma total homocysteine level has emerged as a vascular risk factor5 and 

vascular factors may play an important role in the pathogenesis of Alzheimer’s disease.6 Fur-

thermore, homocysteine has direct neurotoxic effects on hippocampal and cortical neurones.7, 

8 In Alzheimer patients, homocysteine was associated with atrophy of the medial temporal 

lobe and patients with higher homocysteine levels had a more rapid rate of atrophy over time.1 

Since Alzheimer’s disease is characterised by a long prodromal period, its etiology may be bet-

ter investigated in relation to early preclinical markers of the disease. Hippocampal, amygdalar 

and global brain atrophy on MRI may serve as such early markers.9-11 The aim of this study was 

to investigate the association between plasma homocysteine levels and these brain MRI out-

comes as putative early markers of Alzheimer’s disease in a non-demented older population. 

Methods

Study Sample

This study is based on data collected in the Rotterdam Scan Study, a population-based co-

hort study, designed to investigate the determinants and consequences of age-related brain 

changes in the elderly.6 In 1995-1996, we randomly selected 1,904 elderly participants (aged 

60 to 90 years) stratified by gender and age (5 years) from two ongoing population-based 

cohort studies: the Rotterdam Study12 and the Zoetermeer Study.13 The presence of dementia 

was assessed in a stepwise approach as used in the Rotterdam Study.14 First, participants 

were screened with the Mini-Mental State Examination (MMSE) and the Geriatric Mental 

State Schedule (GMS). Those scoring below 26 on the MMSE or more than 0 on the GMS 

were additionally assessed with the CAMDEX interview.15 Subjects thereafter suspected to 

be demented were examined by a neurologist. Finally, an expert panel reviewing all relevant 

information decided whether an individual was to be considered demented or not, based on 

criteria of the DSM-IIIR. Additionally, persons who were blind or had contraindications for MRI 

were excluded, leaving 1,717 persons eligible. A total of 1,077 individuals participated (partici-

pation rate of 63 %) and gave written informed consent to a protocol, which was approved by 

the medical ethics committee of Erasmus Medical Center, Rotterdam, the Netherlands.
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MRI acquisition

All 1,077 participants underwent an axial T1, T2 and proton-density weighted brain MRI scan 

in a 1.5-Tesla unit [Philips (n=514) and Siemens (n=563)].16 For the 563 subjects originating 

from the Rotterdam Study,12 we added a 3D Half-Fourier Acquisition Single-Shot Turbo Spin 

Echo (HASTE) sequence to the protocol (inversion time 440 ms, repetition time 2800 ms, 

128 contiguous sagittal slices of 1.2-mm, matrix 192x256, field of view 256x256). Two HASTE 

modules were sequentially acquired after the inversion pulse (effective echo time of 29 ms 

and 440 ms), of which the first was used for the volumetric assessments of the hippocampus 

and amygdala. Of the 563, fifty-two participants developed claustrophobia, leaving 511 partici-

pants with a HASTE sequence. 

Hippocampal and amygdalar volumes

The HASTE sequence was used to reconstruct coronal slices (contiguous 1.5-mm slices) per-

pendicular to the long axis of the hippocampus (Figure 1). 

  Figure 1. Coronal slice on which the hippocampus (H) and amygdala (A) are depicted

The left and right hippocampus and amygdala were manually traced using a mouse-driven 

cursor based on a reference atlas.17 Tracing proceeded from posterior to anterior, starting 

at the slice where the crux of the fornices was in full profile. The in-plane boundaries of the 

hippocampus were defined to include the subiculum, the CA1 through CA4 sectors of the 

hippocampus proper and the gyrus dentatus. Tracing of the amygdala included all of its nuclei. 
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As the anterior boundary of the amygdala is poorly defined in nature, we defined this to be the 

slice at the rostral extreme of the temporal stem. Volumes (ml) were calculated [sum of areas 

(mm2) X 1.5 mm/1000]. We measured the midsagittal area (cm2) by tracing the margin of the 

inner table of the skull in order to have a proxy for total intracranial volume.9 Two readers, who 

were blinded to clinical information, measured the 511 scans. Intra- and interreader studies 

based on 14 random scans showed good reproducibility. Intrarater intraclass correlation coef-

ficients for the left and right hippocampus were r=0.93 and r=0.90, and interrater intraclass 

correlation coefficients were r=0.87 and r=0.83, respectively. For the left and right amygdala 

the intrarater intraclass correlation coefficients were r=0.82 and r=0.78, the interrater intrac-

lass correlation coefficients were r=0.80 and r=0.77, respectively. 

Global brain atrophy rating

The severity of global brain atrophy was scored on T1 weighted hard copies, blinded to clinical 

information, based on the widening of sulci and narrowing of gyri in comparison to reference 

scans. A score from 0 (no cortical atrophy) to 3 (severe cortical atrophy) at five different brain 

regions (frontal, parietal, temporal and occipital lobes and insular region) was given. The sum 

score of all five regions (range 0-15) was used for the analyses. The intrarater weighted kappa 

was 0.82, and the interrater weighted kappa was 0.81. 

Plasma homocysteine measurements

Non-fasting blood samples were collected and processed at time of MRI as described previ-

ously.18 Blood samples were unavailable in 39 participants due to errors in the blood collection 

process. Plasma levels of total homocysteine were determined by fluorescence polarisation 

immunoassay on an IMx analyser (Abbott). Seven individuals with extreme values were ex-

cluded from the analyses since their plasma homocysteine levels fell outside the range 5-45 

µmol/l in order to minimize the effects of regression dilution bias. Finally, 1,031 participants 

were available for the analyses on global brain atrophy, and 505 participants for the analyses 

on hippocampal and amygdalar atrophy.

Covariates

We obtained information on the following covariates by interview and physical examination in 

1995-1996: diabetes mellitus, hypertension (systolic blood pressure level ≥160 mmHg, or di-

astolic blood pressure level ≥95 mmHg, or use of blood pressure lowering medication), pack-

years of cigarette smoking, vitamin supplements19 and serum creatinine levels (enzymatic 

assay). Presence of carotid artery plaques, and the intima-media thickness of the common 

carotid artery, were assessed as markers of atherosclerotic disease.20 White matter lesions 

on MRI were scored in periventricular (grade 0-9) and subcortical regions (approximated vol-



Homocysteine and brain atrophy

37

ume).16 Infarcts on MRI were defined as focal hyperintensities on T2 weighted images, with-

out prominent hypointensities on T1 weighted images.19

Data analysis

The relation between plasma homocysteine level and atrophy was evaluated using both 

homocysteine in quintiles and as continuous variable. Since homocysteine levels increase 

markedly with age, quintiles were defined in an age-specific manner for each of five-year 

age categories. We compared adjusted means of hippocampal and amygdalar volumes and 

global brain atrophy across the age-specific quintiles of plasma homocysteine by analysis 

of covariance (ANCOVA). The analyses were adjusted for age, sex, diabetes, hypertension, 

pack-years of cigarette smoking, serum creatinine, and, for the hippocampal and amygdalar 

analyses, midsagittal area. Because these analyses did not suggest a non-linear association 

between homocysteine and atrophy, we performed multivariate linear regression to calculate 

the change in atrophy per standard deviation (SD) increase in plasma homocysteine level. We 

investigated whether carotid atherosclerosis, white matter lesions or presence of infarcts on 

MRI mediated the association between homocysteine and atrophy by adding these covariates 

to the model. Assumptions of the models were confirmed by residual analyses.

Results

Selected characteristics of the total study sample and the subset with hippocampal and 

amygdalar volumes are shown in Table 1. 

Table 1. Characteristics of the study sample in total and of the subset with hippocampal and amygdalar 

volumes

Characteristic Total (n=1031) Subset (n=505)

Age, years 72 ± 7 73 ± 8

Sex, % women 52 50

Total homocysteine (µmol/l) 11.5 ± 4.1 11.9 ± 4.3

Presence of diabetes, % 7 6

Presence of hypertension, % 52 53

Pack-years of cigarette smoking 19 ± 24 20 ± 25

Serum creatinine level (µmol/l) 88.9 ± 18.6 89.7 ± 19.9

Values are unadjusted means ± SD or percentages unless otherwise specified
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Plasma homocysteine levels increased with increasing age (1.5 µmol/l increase per 10 years) 

and were higher in men (sex difference 1.2 µmol/l). Sixty-one participants (5.9%) reported use 

of multivitamin supplements, and these individuals had lower plasma homocysteine levels 

than non-users (age and sex adjusted difference –1.3 µmol/l; 95% CI –2.3 to –0.3). 

Figure 2 shows the association between plasma homocysteine levels and hippocampal vol-

umes. People with higher plasma homocysteine levels had smaller hippocampal volumes 

[difference in left hippocampal volume –0.05 (95% CI –0.09 to –0.01) and right hippocampal 

volume –0.03 (95% CI –0.07 to 0.01) per SD increase in plasma homocysteine level adjusted 

for age, sex, diabetes, hypertension, pack-years of cigarette smoking, creatinine levels and 

midsagittal area]. 

Figure 2. Hippocampal volumes according to age-specific quintiles of plasma homocysteine levels. The 

mean volumes (standard error) are plotted at the median of each quintile and are adjusted for age, sex, 

diabetes, hypertension, pack-years of cigarette smoking, creatinine levels and midsagittal area. Note that 

the left hippocampus is on average smaller than the right hippocampus 

Further adjustment for carotid atherosclerosis, white matter lesions and infarcts did not 

change this association (data not shown). In contrast, there was a non-significant decrease 

in amygdalar volume with increasing plasma homocysteine levels (Figure 3). Per SD increase 

in plasma homocysteine level, the left amygdalar volume decreased –0.01 (95% CI –0.04 to 

0.03) and the right amygdalar volume decreased –0.02 ml (95% CI –0.05 to 0.02).
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Figure 3. Amygdalar volumes according to age-specific quintiles of plasma homocysteine levels. The 

mean volumes (standard error) are plotted at the median of each quintile and are adjusted for age, sex, 

diabetes, hypertension, pack-years of cigarette smoking, creatinine levels and midsagittal area. Note that 

the left amygdala is on average smaller than the right amygdala 

Figure 4. Global brain atrophy according to age-specific quintiles of plasma homocysteine levels. The 

mean atrophy score (standard error) is plotted at the median of each quintile and is adjusted for age, sex, 

diabetes, hypertension, pack-years of cigarette smoking and creatinine levels
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Figure 4 shows the association between plasma homocysteine levels and severity of cortical 

atrophy. The degree of cortical atrophy increased with increasing plasma homocysteine levels 

[per SD 0.23 units more (95% CI 0.07 to 0.38)]. This association was unaltered after adjusting 

for carotid atherosclerosis [per SD 0.22 (0.06 to 0.37)] and slightly weakened after adjusting 

for white matter lesions and infarcts [per SD 0.19 (0.03 to 0.34)]. 

The results were not materially altered after exclusion of regular users of multivitamin sup-

plements.

Discussion

This study found that increasing plasma homocysteine levels are associated with more hip-

pocampal and cortical atrophy in an older non-demented population. 

The chief strength of the present study is the population-based study design and the large 

number of volumetric assessments of the hippocampus and amygdala. However, a limitation 

was that the instruments used to assess global brain atrophy were somewhat imprecise. 

Plasma homocysteine levels reflect vitamin status, renal function and genetic variations in 

the enzymes controlling homocysteine metabolism genes.5 Recently, it was shown that a 

low plasma folate level may predict more neocortical atrophy at death21 though homocysteine 

may have mediated this association. There is no available data on effects of genetic varia-

tions in homocysteine metabolism on brain atrophy. Two putative effects of homocysteine 

support a causal association between higher plasma homocysteine levels and brain atrophy. 

First, homocysteine damages the vascular walls22 from arteries.23, 24 People with more global 

brain atrophy have more frequently atherosclerosis in the carotid arteries and white matter 

lesions on MRI, which are assumed to be small vessel disease.25, 26 However, the associa-

tion between plasma homocysteine levels and atrophy was unaltered by adjusting for carotid 

atherosclerosis and only partly reduced by adjusting for white matter lesions, suggesting 

that other pathways may be involved. Second, neurotoxic effects of homocysteine in cul-

tures of cortical and hippocampal neurones could partly explain the associations.7, 8 These 

studies in rats showed that hippocampal neurones were even more sensitive to the effects 

of homocysteine7 than cortical neurones.8 Some individuals with hippocampal, and possibly 

global, brain atrophy are more likely to develop clinical Alzheimer’s disease.10, 11 The findings 

of the present study suggest that higher homocysteine levels may be associated with early 

Alzheimer pathology. However, due to the cross-sectional design of the current study, it re-

mains uncertain whether high homocysteine levels actually precede changes in pathology 

and cause the brain to shrink. Prospective studies using several atrophy and homocysteine 

measurements are necessary to unravel cause and consequence. The finding that high base-

line homocysteine levels in patients with Alzheimer’s disease predicted more rapid atrophy 
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of the medial temporal lobe over the following three years supports a causal association.1 

Our results confirm cross-sectional studies which show a high plasma homocysteine level to 

be associated with Alzheimer’s disease and cognitive impairment.1-3 Furthermore, they are in 

keeping with a prospective study which showed that a high plasma homocysteine level is an 

independent risk factor of Alzheimer’s disease.4

Several large-scale randomised trials with folic acid-based vitamin supplements to lower ho-

mocysteine levels are currently being conducted and almost all of these trials include an 

assessment of cognitive function, some have sub-studies that also include MRI measure-

ments. Further large-scale trials are required to assess whether lowering plasma homo-

cysteine levels may prevent Alzheimer-related structural abnormalities or delay progression of 

clinical symptoms of Alzheimer’s disease. 

References

1. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum  

 total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998; 55:1449-55.

2. Lehmann M, Gottfries CG, Regland B. Identification of cognitive impairment in the elderly:  

 homocysteine is an early marker. Dement Geriatr Cogn Disord 1999; 10:12-20.

3. McCaddon A, Davies G, Hudson P, Tandy S, Cattell H. Total serum homocysteine in senile de- 

 mentia of Alzheimer type. Int J Geriatr Psychiatry 1998; 13:235-9.

4. Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and  

 Alzheimer’s disease. N Engl J Med 2002; 346:476-83.

5. Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu  

 Rev Med 1998; 49:31-62.

6. Breteler MMB. Vascular involvement in cognitive decline and dementia. Epidemiologic evi- 

 dence from the Rotterdam Study and the Rotterdam Scan Study. Ann N Y Acad Sci 2000;  

 903:457-65.

7. Kruman II, Culmsee C, Chan SL, et al. Homocysteine elicits a DNA damage response in neu- 

 rons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 2000; 20:6920- 

 6.

8. Lipton SA, Kim WK, Choi YB, et al. Neurotoxicity associated with dual actions of homocysteine  

 at the N- methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 1997; 94:5923-8.

9. Cuenod CA, Denys A, Michot JL, et al. Amygdala atrophy in Alzheimer’s disease. An in vivo  

 magnetic resonance imaging study. Arch Neurol 1993; 50:941-5.

10. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and pro- 

 gression of Alzheimer’s disease with voxel- compression mapping of serial magnetic reso- 

 nance images. Lancet 2001; 358:201-5.



Chapter 2.3

42

11. Jack CR, Jr., Petersen RC, Xu Y, et al. Rates of hippocampal atrophy correlate with change in clini- 

 cal status in aging and AD. Neurology 2000; 55:484-89.

12. Hofman A, Grobbee DE, de Jong PTVM, van den Ouweland FA. Determinants of disease and  

 disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 1991; 7:403-22.

13. Hofman A, Laar van A, Klein F, Valkenburg HA. Coffee and cholesterol (letter). New England  

 Journal of Medicine 1983; 309:1248-1249.

14. Ott A, Breteler MMB, van Harskamp F, Stijnen T, Hofman A. Incidence and risk of dementia. The  

 Rotterdam Study. Am J Epidemiol 1998; 147:574-80.

15. Roth M, Huppert FA, Tym E. Camdex, The Cambridge examination for mental disorders of the  

 elderly. Cambridge: Cambridge University Press, 1988.

16. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive func- 

 tion: the Rotterdam Scan Study. Ann Neurol 2000; 47:145-51.

17. Duvernoy HM. The human hippocampus: functional anatomy, vascularization and serial sec- 

 tions with MRI. Berlin: Springer-Verlag, 1998.

18. Vermeer SE, Van Dijk EJ, Koudstaal PJ, et al. Homocysteine, silent brain infarcts, and white  

 matter lesions: the Rotterdam Scan Study. Annals of Neurology 2002; 51:285-289.

19. Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MMB. Prevalence and risk factors  

 of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 2002; 33:21-5.

20. Bots ML, van Swieten JC, Breteler MMB, et al. Cerebral white matter lesions and atheroscle- 

 rosis in the Rotterdam Study. Lancet 1993; 341:1232-7.

21. Snowdon DA, Tully CL, Smith CD, Perez Riley K, Markesbery WR. Serum folate and the sever- 

 ity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study. Am J Clin  

 Nutr 2000; 71:993-8.

22. Nappo F, De Rosa N, Marfella R, et al. Impairment of endothelial functions by acute hyperho- 

 mocysteinemia and reversal by antioxidant vitamins. JAMA 1999; 281:2113-8.

23. Fassbender K, Mielke O, Bertsch T, Nafe B, Fröschen S, Hennerici M. Homocysteine in cerebral  

 macroangiography and microangiopathy. Lancet 1999; 353:1586-7.

24. Selhub J, Jacques PF, Bostom AG, et al. Association between plasma homocysteine concentra- 

 tions and extracranial carotid-artery stenosis. N Engl J Med 1995; 332:286-91.

25. Manolio TA, Burke GL, O’Leary DH, et al. Relationships of Cerebral MRI Findings to Ultrasono- 

 graphic Carotid Atherosclerosis in Older Adults : The Cardiovascular Health Study. Arterioscler  

 Thromb Vasc Biol 1999; 19:356-365.

26. Meguro K, Yamaguchi T, Hishinuma T, et al. Periventricular hyperintensity on magnetic reso- 

 nance imaging correlated with brain ageing and atrophy. Neuroradiology 1993; 35:125-9.



43

Chapter 2.4

Alcohol intake and brain MRI findings

Background:  Light-to-moderate alcohol consumers have a lower risk of dementia and possi-

bly Alzheimer’s disease compared to abstainers. As vascular disease may contribute to symp-

toms of Alzheimer’s disease, reduction of cerebrovascular disease in light alcohol consumers 

could account for these observations. However, a low concentration of alcohol may also have 

direct effects on the hippocampus, a brain structure highly affected by Alzheimer’s disease. 

Objective: We investigated alcohol intake in relation to brain magnetic resonance imaging 

(MRI) findings of presumed vascular origin (white matter lesions and infarcts) and findings 

more specifically found in early Alzheimer’s disease (hippocampal and amygdalar atrophy).

Design: In a population-based sample of 1,074 non-demented elderly (age 60-90) we made 

brain MRI on which we rated white matter lesions and brain infarcts. In a subset of 509 

people, hippocampal and amygdalar volumes on MRI were measured. Alcohol intake was as-

sessed with a structured questionnaire. We categorized alcohol intake into lifetime abstaining, 

very light (<1 drink weekly), light (≥1 drink/week to <1 drink/day), moderate (≥1 drink/day to <4 

drinks/day) and heavy (≥4 drinks/day).

Results: Light-to-moderate alcohol drinkers had less severe white matter lesions and brain 

infarcts on MRI compared to abstainers or heavy drinkers. Abstainers and very light drinkers 

had smaller hippocampal and amygdalar volumes on MRI than light-to-moderate drinkers, but 

only if carrying an apolipoprotein (APOE) ε4 allele. 

Conclusions: Our data suggest that light-to-moderate alcohol intake is associated with a low-

er prevalence of vascular brain findings and -in APOE ε4 carriers- hippocampal and amygdalar 

atrophy on MRI. 
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Introduction

Several prospective population-based studies have shown that light-to-moderate alcohol con-

sumers have a lower risk of dementia compared to abstaining or heavy alcohol use.1-4 Most 

studies find a relation with vascular dementia,2, 4, 5 consistent with the known beneficial ef-

fects of light-to-moderate alcohol consumption on vascular risk profile6 and risk of stroke.7 

Vascular pathology likely contributes to the clinical syndrome in a large proportion of elderly 

Alzheimer patients.8, 9 A plausible explanation for the associations that are seen between 

alcohol consumption and overall dementia or Alzheimer’s disease3, 4, 10 is therefore that this 

is through an effect on vascular pathology. Alternatively, alcohol in low amounts could have 

stimulatory effects on the release of acetylcholine in the hippocampus11 and other non-vas-

cular mechanisms might play a role.12 A non-vascular relation between alcohol intake and 

Alzheimer’s disease was indeed suggested by our observation in the Rotterdam Study that 

alcohol intake seemed only associated with Alzheimer’s disease in carriers of the apolipopro-

tein (APOE) ε4 allele,2 the risk allele for Alzheimer’s disease.13 

To further investigate what could underlie the relation between alcohol intake and risk of 

dementia, we decided to focus on the relation between alcohol intake and structural brain 

findings on MRI of non-demented elderly. We hypothesized that if the effect of alcohol on 

dementia risk were purely through an effect on vascular pathology, one would see a relation 

between alcohol intake and markers of cerebrovascular disease (brain infarcts, white mat-

ter lesions9, 14-16 but not between alcohol intake and putative presymptomatic MRI markers 

of Alzheimer’s disease (hippocampal and amygdalar atrophy17-22 We investigated this in the 

population-based Rotterdam Scan Study.

 

Methods

Study sample

This study was based on data collected in the Rotterdam Scan Study, a population-based 

cohort study designed to investigate determinants and consequences of age-related brain 

changes on MRI.23 The study had its baseline examinations from 1995 to 1996. At that time, 

we made a random selection of 1,904 elderly aged 60 to 90 years originating from two popu-

lation cohort studies in strata of age (5 years) and sex. After exclusion of persons with demen-

tia,24 or contraindications to undergo MRI (such as metal clips, pacemaker, or claustrophobia), 

1,717 persons were eligible of whom 1,077 participated and gave written informed consent 

(participation rate 63%, mean age 72.2 years, 52% women). The medical ethics committee 

of Erasmus Medical Center approved the study protocol.
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Alcohol intake

A physician questioned each participant at baseline examinations about alcohol intake with a 

structured questionnaire. Alcohol intake was coded into lifetime abstaining, former drinking 

and current drinking (defined as having consumed alcohol during the past 12 months). Current 

and former drinkers were asked about the amount of their alcohol consumption. The amount 

assessed with this questionnaire correlated well with the information obtained by a food fre-

quency questionnaire administered five years before in part of the sample (Pearson r=0.72, 

P<0.01).25 We categorized current alcohol drinkers into very light (<1 drink weekly), light (≥1 

drink/week to <1 drink/day), moderate (≥1 drink/day to <4 drinks/day) and heavy (≥4 drinks/

day) drinkers similar to our previous report on dementia.2 For three participants information 

on alcohol intake was missing. 

MRI acquisition

All participants underwent axial T1, T2 and proton-density weighted brain MRI scanning with 

a 1.5-Tesla unit (Philips or Siemens) at baseline.26 Only the Siemens MRI unit, in which 563 

participants had their MRI brain scan, allowed us to additionally include a custom-made three 

dimensional (3D) MRI sequence (Half-Fourier Acquisition Single-Shot Turbo Spin Echo27 for 

volumetric assessment of the hippocampus and amygdala. Fifty-two of the 563 participants 

developed claustrophobia during the MRI acquisition and another two had no information on 

alcohol intake, leaving 509 participants with information on alcohol intake and hippocampal 

and amygdalar volumes. 

Cerebrovascular disease on MRI 

MRI measurements were performed blinded to clinical information of the participants.26, 28 

White matter lesions were considered present if visible as hyperintense on proton-density 

and T2 weighted images, without prominent hypointensity on T1 weighted scans. Periven-

tricular white matter lesions were scored semi-quantitatively from 0-9 and subcortical white 

matter lesions were counted in different size categories to approximate a total lesion volume 

(ml).26 We defined infarcts as focal hyperintensities on T2 weighted images. Infarcts in the 

white matter also had to have corresponding hypointensities on T1 weighted images in order 

to distinguish them from white matter lesions. Infarcts on MRI were classified as silent or 

symptomatic.28

Hippocampal and amygdalar volumes on MRI

We constructed a series of coronal brain slices (contiguous 1.5-mm slice thickness) from 

the 3D MRI, aligned to be perpendicular to the long axis of the hippocampus. We manually 

traced the boundaries of the hippocampus and amygdala on both sides on each slice with a 
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mouse-driven cursor.27 The summed surface areas were multiplied by slice thickness to yield 

estimates of the hippocampal and amygdalar volume (ml). The left and right-sided volumes 

were summed to yield the total hippocampal and amygdalar volume. As a proxy for head 

size, we measured on the middle sagittal MRI slice the intracranial cross-sectional area.27 We 

corrected for head size differences across individuals by dividing the uncorrected volumes by 

the subject’s calculated head size area and subsequently multiplying this ratio by the average 

head size area (men and women separately).29, 30 

Covariates

The following covariates were assessed at baseline by interview and physical examination: 

pack-years of cigarette smoking, educational level, body mass index, diabetes mellitus and 

hypertension.28 APOE genotype testing was performed31 and available for 969 participants in 

the total sample and 436 participants in the subset with hippocampal and amygdalar volume 

assessment; the remainder was mainly missing owing to no blood available. Participants 

were classified into carrier or non-carrier of an APOE ε4 allele; those with genotype APOE 

ε2ε4 (n=22 in the total sample and 9 in the subsample) were excluded in analyses considering 

APOE genotype.

Data analysis

We used multivariable linear regression to quantify the association between alcohol intake 

categories and white matter lesions and hippocampal and amygdalar volumes. With logis-

tic regression, we calculated the adjusted odds ratio (95% confidence interval (CI)) of brain 

infarcts across alcohol intake categories using abstainers as the reference category. For tests 

of linear trend, we treated the categories of alcohol intake as continuous variable. For tests of 

quadratic trend, we squared the linear trend variable. As covariates we included age, sex and 

pack-years of cigarette smoking. Additionally, we adjusted for educational level, body mass 

index, diabetes and hypertension. We evaluated whether the effects of alcohol differed across 

sex and APOE genotype (carrier or non-carrier of the APOE ε4 allele) by performing stratified 

analyses and including interaction terms in the model. 

Results

There were no differences in baseline characteristics between the total sample and the sub-

sample with assessment of hippocampal and amygdalar volumes on MRI (Table 1). In Table 2 

characteristics according to alcohol intake categories are given for the total sample. Former 

drinkers (n=86 in the total sample and n=42 in the subsample) more frequently had hyper-

tension and diabetes mellitus compared to current drinkers supporting our presumption that 
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former drinkers could have stopped drinking due to illness. Therefore, former drinkers were 

excluded from analyses on alcohol intake and brain MRI findings.

Table 1. Characteristics of the total study sample and of the subsample with assessment of hippocampal 

and amygdalar volumes on 3D MRI

Total sample

(n=1074)

Subsample with 3D MRI

(n=509)

Age, years 72 ± 7 73 ± 8

Women, % 52 49

Current alcohol intake, drinks/day 1.2 ± 1.3 1.2 ± 1.4

Former alcohol users, % 8 8

Pack-years of cigarette smoking 19 ± 24 20 ± 25

Primary education, % 35 31

Body mass index, kg/m2 27 ± 4 26 ± 4

Presence of diabetes, % 7 6

Presence of hypertension, % 52 53

Presence of APOE ε4 allele, %* 28 27

Presence of symptomatic infarct on MRI, % 4 6

Values are means ± standard deviation or percentages.

*Available in 969 out of the 1074 and in 436 out of the 509.

Table 3 shows that light alcohol drinkers had the lowest degree of periventricular white mat-

ter lesions on MRI (adjusted difference compared to abstainers 0.69 (95% CI 0.25 to 1.13, 

P = 0.002); compared to heavy drinkers 0.79 (95% CI 0.17 to 1.41, P = 0.01)). They also had 

less subcortical white matter lesions but differences did not reach statistical significance (ad-

justed difference compared to abstainers 0.57 (95% CI –0.05 to 1.20, P = 0.07); compared 

to heavy drinkers 0.35 (95% CI –0.54 to 1.24, P = 0.44)). Brain infarcts on MRI were less 

frequently found in very light and light drinkers but none of the odds ratios reached statistical 

significance (Table 3). When we excluded persons with symptomatic infarcts on MRI (n=42), 

because they could have changed alcohol intake after the stroke, results remained similar. The 

associations did not change after additional adjustments for educational level, body mass in-

dex, diabetes and hypertension and were similar in men and women and in APOE ε4 carriers 

and non-ε4 carriers.
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Table 4 shows that overall there was no association between alcohol intake and hippocampal 

or amygdalar volumes on MRI. However, the effect of alcohol intake on volumes differed ac-

cording to APOE genotype (P-value of interaction term = 0.02 for hippocampal volume and 

P = 0.07 for amygdalar volume). In carriers of the ε4 allele, alcohol intake was positively as-

sociated with hippocampal and amygdalar volumes, whereas in non-ε4 carriers there was no 

association (Figure 1). The associations between alcohol intake and hippocampal or amygdalar 

volumes did not change after additional adjustment for educational level, body mass index, 

diabetes and hypertension and were similar in men and women. 

Figure 1. Hippocampal and amygdalar volume on MRI according to alcohol intake in strata of APOE geno-

type (non-ε4 carrier (n=288) and ε4 carrier (n=101)). Volumes were adjusted for age, sex and pack-years of 

cigarette smoking and normalized to average head size. Error bars indicate standard error of the mean
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Discussion

In this population-based study in the elderly, we found that light-to-moderate alcohol drinkers 

had less cerebral white matter lesions and brain infarcts on MRI compared to abstainers and 

heavy drinkers. In APOE ε4 carriers, but not in non-ε4 carriers, we found a positive association 

between alcohol intake and hippocampal and amygdalar volumes on MRI. 

The strength of our study is the large sample with brain MRI and volumetric assessments of 

the hippocampus and amygdala. Some methodological issues need to be discussed. First, we 

relied on self-reported alcohol intake, which may have led to underreporting or overreporting. 

Although we may misclassify absolute amounts of alcohol intake, the ranking of people ac-

cording to their alcohol intake will be adequate.32 Second, we assessed average alcohol intake 

over a 1-year period before MRI examinations while it might be better to have information on 

the average alcohol intake over the lifetime. Finally, we had no detailed information on the 

type of alcoholic drink used. Previous studies showed that moderate beer, liquids or wine con-

sumption are equally associated with a reduced risk of dementia,2, 4 though the Copenhagen 

City Heart Study found the association only for moderate wine consumption.10 

Light-to-moderate alcohol drinking is associated with a reduced risk of cognitive impairment 

and dementia compared to lifetime abstention.1-4, 10, 33, 34 In line with the beneficial effects of 

alcohol on lipid profile, hemostatic factors,6 and atherosclerosis,35 most investigators found 

a reduced risk of vascular dementia in light-to-moderate alcohol consumers.2, 4, 5 Consistent 

with these vascular effects of alcohol and with observations in the Cardiovascular Health 

Study (CHS),36 we found that light-to-moderate alcohol consumers had less cerebral white 

matter lesions -in particular in the periventricular region- and infarcts on MRI. Different patho-

physiological events may lead to either periventricular or subcortical white matter lesions.14 

Especially the periventricular white matter is vulnerable to ischemia and severe periventricular 

white matter lesions are related to carotid atherosclerosis.37 Light-to-moderate alcohol drink-

ing has also been associated with a reduced risk of Alzheimer’s disease in several,1, 3, 4, 10, 38 

but not all studies.39, 40 Besides reducing cerebrovascular pathology which contributes to the 

development of symptoms of Alzheimer’s disease8, 9, 24 alcohol in moderate amounts may also 

increase the release of acetylcholine of the hippocampus,11 has antioxidative effects41 and in-

duce the release of potentially beneficial prostaglandins.12 The traditional Alzheimer pathology, 

i.e. amyloid plaques and neurofibrillary tangles accumulates in the brain with high predilection 

of the medial temporal lobe.42 This may lead to neuronal loss and atrophy in vivo detectable on 

MRI even in persons who have not yet developed clinical symptoms of dementia.17-22 APOE ε4 

carriers are at increased risk to develop Alzheimer neuropathology,43 atrophy of structures in 

the medial temporal lobe44 and clinical Alzheimer’s disease.13 Observations in the Rotterdam 

Study suggested that light-to-moderate alcohol consumption is associated with a reduced risk 
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of Alzheimer’s disease only in APOE ε4 carriers.2 Carmelli et al45 also reported a stronger as-

sociation of light drinking and better cognitive performance in APOE ε4 carriers. In our current 

study, we found that APOE ε4 carriers who were light-to-moderate alcohol drinkers had less 

hippocampal and amygdalar atrophy compared to abstainers. Although not all persons with 

hippocampal or amygdalar atrophy will develop Alzheimer’s disease, they are at increased risk 

to develop clinical symptoms of Alzheimer’s disease18 and, as such, our finding support the 

hypothesis that there could be a reduced risk of Alzheimer’s disease for light-to-moderate 

alcohol drinkers with the APOE ε4 allele. Alcohol has antioxidative properties41 and this might 

suppress the highly sensitive peroxidation of the apolipoprotein ε4,46 and thereby amyloid 

plaque formation in the medial temporal lobe47, 48 or neurotoxicity of ß-amyloid.49 Surprisingly, 

the CHS found a lower risk of dementia in alcohol users to be more consistent among persons 

without the APOE ε4 allele.4 Possibly the younger population studied in the Rotterdam Study 

compared to the CHS led to these discrepancies because the APOE ε4 allele is a stronger 

risk factor for Alzheimer’s disease at younger ages.13 The EVA study also found a reduced risk 

of cognitive deterioration with alcohol intake in non-ε4 carriers but in that study the APOE ε4 

allele itself was not a risk factor for cognitive decline.50 

To conclude, our findings suggest that light-to-moderate alcohol intake is associated to brain 

MRI findings indicative of cerebrovascular disease and -in APOE ε4 carriers- to hippocampal 

and amygdalar atrophy on MRI. Given the possibility of confounding in observational studies 

on alcohol use, and the potentially dangerous effects of alcohol, recommendations to start 

drinking alcohol cannot be given. Our findings are however in line with observations that light-

to-moderate alcohol consumption is associated with a reduced risk of dementia. 
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Chapter 2.5

Apolipoproteine E genotype and brain atrophy

The ε4 allele of the APOE gene increases the risk for Alzheimer’s disease (AD), 

whereas the ε2 allele may be protective. The authors assessed the impact of 

APOE genotype on hippocampal, amygdalar and global brain atrophy as puta-

tive markers of preclinical AD in a non-demented population. Carriers of ε4 had 

significantly more hippocampal and amygdalar atrophy than ε3ε3 subjects, but 

not more global brain atrophy. Carriers of ε2 did not have less brain atrophy than 

ε3ε3 subjects.
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Introduction

The elevated risk of APOE allele ε4 for AD is well established, whereas the APOE allele ε2 

may have a protective effect on AD. Hippocampal and amygdalar atrophy are putative early 

markers of AD. MRI studies investigating the impact of APOE genotype on the degree of 

hippocampal atrophy have yielded contradictory findings.1-6 Some studies found demented 

persons carrying the ε4 allele to have more severe hippocampal atrophy1, 2 but other studies 

did not.3, 4 Suggestions that primarily the right hippocampus is affected in non-demented and 

demented ε4 carriers need further study.5, 6 Most studies, although not all,7 showed no effect 

of the ε4 allele on the degree of global brain atrophy, which occurs probably later in the course 

of AD.3, 6, 8  To our knowledge, no studies specifically evaluated the relation of the ε2 allele with 

the degree of hippocampal, amygdalar, and global brain atrophy. The aim of this study was to 

assess whether hippocampal, amygdalar, and global brain atrophy in non-demented elderly 

subjects differed according to APOE genotype. We hypothesized that ε2 carriers would have 

less and ε4 carriers more atrophy than those with the common APOE ε3ε3 genotype.

Methods

Subjects and procedures

In 1995 and 1996, we invited 1,904 elderly aged 60 to 90 years to participate as part of the 

Rotterdam Scan Study.9 We excluded persons who were demented, were blind or had MRI 

contraindications, leaving 1,717 persons eligible. Complete information, including a cerebral 

MRI scan, was obtained in 1,077 individuals, who gave written informed consent (participa-

tion rate 63%). The medical ethics committee of Erasmus University, Rotterdam, the Nether-

lands approved the study. 

MRI examinations were done using a 1.5 Tesla MR unit and included an axial T1 weighted 

scan (repetition time [TR] 485 ms or 700 ms, echo time [TE] 14 ms, slice thickness 5 or 6 

mm, interslice gap 20%). For volumetric measurements of the hippocampus and amygdala, 

a custom-made, inversion recovery - double contrast 3D half-Fourier acquisition single-shot 

turbo spin echo (HASTE) sequence was included (inversion time 440 ms, [TR] 2800 ms, 128 

contiguous sagittal slices of 1.2-mm, matrix 192x256, field of view 256x256). Two HASTE 

modules were sequentially acquired after the inversion pulse (effective TE of 29 ms and 440 

ms); the first was used for the volume measurements. This 3D sequence was done in a sub-

sample of 563 subjects; 52 developed claustrophobia during the measurement, leaving 511 

subjects. APOE genotyping was performed on coded DNA samples10 without knowledge of 

MRI measurements. APOE genotyping was present for 971 in the total sample and 437 in 

the subsample; the remainder was missing owing to no blood available. The allele frequencies 
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were ε2=0.08, ε3=0.77, and ε4=0.15, which was in Hardy-Weinberg equilibrium (χ2=0.6, df=3: 

P>0.2). Memory function was evaluated by a 15 word verbal word learning task that tests im-

mediate and delayed recall (after 15 minutes). 

MRI measurements

MRI measurements were done blinded to clinical characteristics. Global brain atrophy was 

scored on T1 weighted scans for cortical atrophy based on the size of gyri and sulci at five 

locations (0 [no cortical atrophy] to 3 [severe cortical atrophy]: total range 0 to 15), and for 

subcortical atrophy by the ventricle-to-brain ratio (average of assessments at three loca-

tions). Intra- and interreader studies showed moderate to good agreement. Hippocampal 

and amygdalar volumes were measured on coronal slices (1.5-mm, no interslice gap) recon-

structed from the HASTE to be perpendicular to the long axis of the hippocampus. The left 

and right hippocampus and amygdala were manually traced with a mouse-driven cursor on a 

SUN work station featuring a Magic View 1000 program using boundaries similar to others.4 

The anterior boundary of the amygdala was defined as the plane including the most anterior 

part of the temporal stem. Volumes were calculated by summing the areas multiplied by slice 

thickness. Intra- and interreader studies showed intraclass correlation coefficients exceeded 

r=0.77. We also measured the midsagittal area by tracing the inner skull in order to have a 

proxy for intracranial volume.

Data analyses

APOE genotypes were grouped in at least one APOE ε2 allele (APOE ε2+), APOE ε3ε3, or 

at least one APOE ε4 allele (APOE ε4+). Subjects with APOE ε2ε4 genotype were excluded 

(n=22 in the total study sample and n=9 in the subsample). The APOE group was entered as 

a categorical dummy variable (with APOE ε3ε3 as reference) into a multiple linear regression 

model (analysis of covariance). This model included age, sex and -in the hippocampal and 

amygdalar analyses- midsagittal area as covariates. We calculated adjusted means in cortical 

and subcortical atrophy and hippocampal and amygdalar volumes across APOE genotypes 

by entering the mean age, sex distribution, and -in the hippocampal and amygdalar analyses- 

mean midsagittal area in the linear regression model. Analyses were done for the left and 

right hippocampal and amygdalar volume separately and for the sum of left and right volumes. 

Finally, we repeated the analyses excluding persons with a memory score (immediate or de-

layed recall) <1.5 SD of the age- and education- adjusted means.
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Results

Characteristics according to APOE genotype are shown in Table 1. The total study sample 

comprised 24 subjects homozygous for the ε4 allele, 10 of whom were in the subsample. 

Carriers of ε4 had more often a low memory score than those with APOE ε3ε3 (P=0.01). 

APOE genotype was not related to global brain atrophy (age- and sex- adjusted means [SEM] 

for cortical atrophy: ε2+ =5.63 [0.21], ε3ε3 =5.46 [0.09], ε4+ =5.57 [0.14], [P=0.65]; for sub-

cortical atrophy ε2+ =0.321 [0.003], ε3ε3 =0.316 [0.001], ε4+ =0.316 [0.002], [P=0.19]).

Carriers of ε4 had significantly smaller hippocampi and amygdalae than did subjects with 

APOE ε3ε3, both on the left and right side (Table 2). APOE ε2 carriers did not have larger hip-

pocampal or amygdalar volumes compared to APOE ε3ε3 subjects. In contrast, their average 

volumes approximated those of ε4 carriers (difference in total hippocampal and total amy-

gdalar volume for ε2 versus ε4 carriers 0.09 ml [-0.18 to 0.35] and 0.13 ml [-0.10 to 0.35]). 

Table 1. Characteristics of study sample according to APOE genotype   

APOE genotype*

Characteristic
APOE ε2+

(n=120)

APOE ε3ε3

(n=568)

APOE ε4+

(n=261)

Age, years 72 ± 7 73 ± 7 71 ± 7

Sex, % women 58 51 52 

Mini-Mental State Examination 27.7 ± 2.0 27.5 ± 2.1 27.1 ± 2.5

Memory score < 1.5 SD, %† 7 9 15

Cortical atrophy, range 0-15 5.63 ± 2.71 5.56 ± 2.77 5.35 ± 2.82

Subcortical atrophy, ratio 0.321 ± 0.039 0.317 ± 0.036 0.314 ± 0.032

Hippocampus (ml)‡

Left 3.12 ± 0.45 3.19 ± 0.46 3.12 ± 0.45

Right 3.21 ± 0.39 3.26 ± 0.45 3.19 ± 0.47

Amygdala (ml)‡

Left 2.22 ± 0.30 2.25 ± 0.38 2.17 ± 0.41

Right 2.31 ± 0.36 2.35 ± 0.41 2.28 ± 0.40

Values are unadjusted means ±SD or percentages.

* Subjects with APOE ε2ε4 (n=22) were excluded.

† Percentage of subjects with memory score <1.5 SD below the age and education adjusted means.

‡ Hippocampal and amygdalar volumes were assessed in 428 subjects
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Hippocampal and amygdalar volumes decreased with increasing ε4 dose (difference with 

ε3ε3 subjects, total hippocampal volume: 1 allele –0.17 ml [95% CI –0.35 to 0.02], 2 alleles 

–0.71 ml [95% CI –1.22 to –0.20]; total amygdalar volume: 1 allele –0.17 ml [95% CI –0.33 to 

–0.02], 2 alleles –0.42 ml [95% CI –0.85 to 0.02]). 

Table 2. Difference in hippocampal and amygdalar volume according to APOE genotype

Difference in volume (95% CI) 

as compared to subjects with APOE ε3ε3 (n=259)*

Number

Hippocampus Amygdala

Left Right Left Right

APOE ε2+ 52
–0.08 

(–0.21 to 0.05)

–0.05 

(–0.17 to 0.08)

–0.03 

(–0.14 to 0.07)

–0.03 

(–0.14 to 0.08)

APOE ε4+ 117
–0.11 

(–0.20 to –0.01)

–0.11 

(–0.20 to –0.02)

–0.10 

(–0.18 to –0.02)

–0.09 

(–0.17 to –0.01)

*Values are differences (95% CI) in volume (ml), adjusted for age, sex and midsagittal area

Subjects with memory performance lower than 1.5 SD below the age- and education- adjust-

ed means had smaller hippocampal (adjusted difference –0.25 ml [95% CI –0.50 to –0.01]) but 

not amygdalar volumes (–0.08 ml [95% CI –0.29 to 0.13]). When we excluded these subjects, 

we found a similar effect of ε4 on volumes (Table 3).

Table 3. Difference in hippocampal and amygdalar volume according to APOE genotype, in total sample 

and in sample after exclusion of subjects with low memory performance 

Difference in volume (95% CI) 

as compared to subjects with APOE ε3ε3*

Hippocampus Amygdala

Total
Exclusion low memory 

performance†
Total

Exclusion low memory 

performance†

Number 428 369 428 369

APOE ε2+
–0.13

(–0.37 to 0.12)

–0.20

(–0.45 to 0.05)

–0.06 

(–0.27 to 0.14)

–0.13 

(–0.35 to 0.08)

APOE ε4+
–0.21

(–0.39 to –0.03)

–0.21 

(–0.40 to –0.02)

–0.19 

(–0.34 to –0.04) 

–0.17

(–0.33 to –0.01)

*Values are difference (95% CI) in volume (ml), adjusted for age, sex and midsagittal area.

†Subjects with memory score <1.5 SD below the age and education adjusted means were excluded
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Discussion

We found that non-demented ε4 carriers had more hippocampal and amygdalar atrophy, but 

not more global brain atrophy, than those with the APOE ε3ε3 genotype. Suggestions from 

smaller studies in both nondemented (n=54) and demented (n=42) subjects that the ε4 allele 

especially affected the right hippocampus and amygdala could not be confirmed.5, 6 Contrary 

to expectations, ε2 carriers had more atrophy than those with the ε3ε3 genotype, but the 

difference was not statistically significant. Our finding that APOE genotype is not related 

to global brain atrophy is in keeping with previous studies in non-demented and demented 

elderly.3, 6, 8 However, the rating of global brain atrophy was less sensitive than our volumetric 

measurements and subtle differences in global brain atrophy across genotype may have been 

missed. We considered that the associations that we found in this non-demented population 

may reflect preclinical AD in ε4 carriers. Indeed, the ε4 carriers more often had low memory 

performance which was associated with smaller hippocampal volumes. However, excluding 

subjects with memory performance lower than 1.5 SD below the age- and education- adjust-

ed means did not change results. Although we cannot exclude the possibility that ε4 carriers 

have smaller hippocampi and amygdalae throughout life, our data suggest that measurable 

hippocampal and amygdalar atrophy occurs before memory decline can be objectively deter-

mined. 
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Chapter 3.1 

Plasma estrogens, hippocampal atrophy and memory performance

Background: Estrogens may prevent cognitive decline and Alzheimer disease. Animal study 

findings have shown beneficial effects of estrogen on the brain, particularly on the hippocam-

pus, a structure related to memory performance and early Alzheimer disease.

Objective: To investigate whether higher levels of endogenous estradiol in older women and 

men are associated with larger hippocampal volumes on magnetic resonance imaging and 

better memory performance.

Design and Setting: Cross-sectional analysis within the Rotterdam Scan Study, a population-

based study in the Netherlands of elderly subjects who do not have dementia.

Participants: Two hundred ten women and 202 men, aged 60 to 90 years, with plasma levels 

of total estradiol and, in part, 162 women and 149 men also with levels of bioavailable and 

free estradiol.

Main Outcome Measure: Hippocampal volumes on magnetic resonance imaging and 

memory performance (delayed recall).

Results: Women with higher total estradiol levels had smaller hippocampal volumes and 

poorer memory performance –0.29 ml (95% confidence interval, –0.57 to –0.00) and –0.4 

(95% confidence interval, –1.3 to 0.5) fewer words in delayed recall testing for the highest 

tertile compared with the lowest tertile. Similar inverse associations were found among bio-

available and free-estradiol levels, hippocampal volumes, and memory. In men, no association 

was observed between estradiol levels and hippocampal volume, but a trend was found for 

higher levels of total estradiol to be associated with poorer memory performance.

Conclusion: Our data do not support the hypothesis that higher levels of endogenous es-

tradiol in older women and men are associated with larger hippocampal volumes and better 

memory performance.
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Introduction

After menopause, women have low levels of circulating estrogens. Observational studies 

reported a reduced risk of cognitive decline and Alzheimer disease (AD) in postmenopausal 

women using estrogen replacement therapy.1, 2 In animals, estrogens protect hippocampal 

neurons exposed to amyloid-ß,3 improve synapse formation on dendritic spines in the hip-

pocampus,4 and promote survival of hippocampal neurons, acting in concert with growth 

factors.5 Estrogen receptors are located throughout the brain, but especially in the hippocam-

pus.6 Given the beneficial effects of estrogens on the hippocampus in animals, it has been 

hypothesized that estrogens may prevent hippocampal atrophy, a key feature of AD.7 The hip-

pocampus plays a pivotal role in memory function and is one of the first regions affected in 

AD.8 The aim of this study was to investigate whether higher endogenous levels of estradiol 

were associated with larger hippocampal volumes on magnetic resonance imaging (MRI) and 

better memory performance. We examined this hypothesis in a population-based study of 

older women and men who did not have dementia.

Methods

Rotterdam Scan Study

This study is based on all participants in the Rotterdam Scan Study that originated from the 

Rotterdam Study. The Rotterdam Study is a large population-based cohort study in the Ne-

therlands that started in 1990 and investigates the prevalence, incidence, and determinants 

of various chronic diseases among elderly participants.9 From 1995 to 1996, we randomly se-

lected 965 living members (aged, 60-90 years) of this cohort in strata of sex and age (5 years) 

for participation in the Rotterdam Scan Study.10 After exclusion of individuals who had demen-

tia (n=16),11 or had contraindications to undergo MRI (n=117), 832 persons were eligible for 

our study. Among these, 563 participants gave their written informed consent to participate in 

the study (response rate, 68%), which included undergoing a MRI brain scan. The study was 

approved by the medical ethics committee of Erasmus MC, Rotterdam, the Netherlands.

MRI procedures

All subjects underwent T1-, T2-, and proton-density–weighted images in a 1.5-T magnetic 

resonance unit (VISION MR; Siemens, Erlangen, Germany).12 For volumetric measurements 

of the hippocampus, a custom-made, inversion recovery—double contrast, 3-dimensional, 

half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence was included (inver-

sion time, 440 milliseconds; repetition time, 2800 milliseconds; 128 contiguous sagittal slices 

of 1.2-mm; acquisition matrix, 192×256 pixels; and field of view, 256×256 cm). Two HASTE 
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modules were sequentially acquired after the inversion pulse (effective echo times of 29 mil-

liseconds and 440 milliseconds). Each HASTE module combined nonselective radiofrequency 

excitations to provide a short interecho spacing of 3.9 milliseconds. The fi rst HASTE module 

was used for the hippocampal volume measurement.

Hippocampal volumes

We reconstructed a series of coronal brain slices (contiguous 1.5-mm slices) based on the 

HASTE sequence, aligned to be perpendicular to the long axis of the hippocampus. All recon-

structed slices were transferred to a workstation (Magic View 1000; Siemens) for volumetric 

assessment of the left and right hippocampi (Figure 1). 

Figure 1. Coronal slice on which left and right hippocampus (H) are depicted

Referencing to an anatomical atlas,13 we manually traced the boundaries of both hippocampi 

on each slice using a mouse-driven pointer. We proceeded from posterior to anterior, starting 

on the slice where the crux of the fornices was in full profi le. The alveus could often be used 

to delineate the boundary of the hippocampal head from the amygdala. Entering the outlined 

surface areas (expressed in millimeters squared), we multiplied the summed surface areas 

on each side with slice thickness to yield estimates of the left and right hippocampal volume 

(expressed in milliliters). In the current analyses the left and right hippocampal volumes were 

summed.

We also reconstructed a midsagittal slice (thickness 3.0 mm). The midsagittal area, which 

was used as a proxy for intracranial volume, was measured by tracing the inner table of the 

skull. Two raters (T.d.H. and a colleague) who were blinded to any clinical information related 

to the participants, assessed the scans. Studies performed on 14 random scans to evaluate 

intrarater and interrater correlation showed good overall agreement.
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Memory performance

All participants underwent neuropsychological testing.12 The Mini-Mental State Examination 

was administered to assess global cognitive function.14 Memory function was evaluated by 

a 15-word learning test based on the Rey Auditory Verbal Learning Test.15 This test consists 

of 3 learning trials in which 15 words have to be remembered. After 15 minutes, the subject 

is asked to recall as many words as possible (delayed recall). In the present study we used 

the delayed recall score because this score is most strongly associated with hippocampal 

volumes16 and with early AD.17

Blood measurements

Venapuncture was done in nonfasting subjects between 8:30 AM and 4 PM at baseline exam-

ination of the Rotterdam Scan Study (1990-1993). Blood samples were collected in 5-ml tubes 

containing a 0.5-ml sodium citrate solution. All tubes were stored on ice before and after 

blood sampling. Platelet-free plasma was obtained by 2-stage centrifugation (10 minutes at 

1600g at 4ºC and 30 minutes at 7000g at 4ºC). Platelet-free samples were immediately frozen 

in liquid nitrogen and stored at –80ºC. Assays were performed blinded to information on the 

subject. Plasma levels of estradiol and sex hormone–binding globulin were estimated with 

double antibody radioimmunoassays (ultrasensitive method for estradiol; Diagnostic Systems 

Laboratories, Webster, Tex). Because of the small volumes of plasma available, all estradiol 

levels are single sample estimations. Intra-assay coefficients of variation, determined on the 

basis of duplicate results of internal quality control pools with 3 different levels of each ana-

lyte, were below 4% for sex hormone–binding globulin and 18% for estradiol. Because inter-

assay variations were 14% (sex hormone–binding globulin) and 21% (estradiol), results of all 

batches were normalized by multiplying all concentrations within a batch with a factor, which 

equalized results for the internal quality control pools. As measures of the levels of bioavail-

able and free estradiol, nonsex hormone–binding globulin-bound estradiol, and nonprotein-

bound estradiol, respectively, were calculated on the basis of hormone and binding protein 

levels.18, 19 The median interval from blood sampling (1990-1993) to hippocampal volumes and 

memory testing (1995-1996) was 2.9 years (range, 1.6-6.6 years).

Covariates

Several variables may confound an association between estradiol levels and hippocampal 

volume or memory performance, such as age at the time of venapuncture, educational level, 

smoking habits, alcohol intake, body mass index (BMI) (calculated as weight in kilograms 

divided by the height in meters squared), depressive symptoms, apolipoprotein E (APOE) 

genotype, and for women, the variables included type of menopause, age at menopause, and 

use of hormone replacement therapy (HRT) (ie, those who ever used HRT or those who never 
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used HRT) for menopausal reports  (Anatomical Therapeutical Chemical code g03). The level 

of education was dichotomized into primary education and lower vocational training and uni-

versity education. We categorized smoking status into current, former, and never and made 

dummy variables for the analyses. Alcohol intake was recorded in grams per day.20 Depres-

sive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale 

(CES-D)21 at time of assessment of memory performance. Apolipoprotein E genotyping was 

done according to standard methods22 and was coded into non-APOE ε4 carrier and APOE 

ε4 carrier. Type of menopause was classified into natural or artificial (surgically or chemically 

induced). Age at natural menopause was defined as the age at which menses had not oc-

curred for at least 1 year. Type and age of menopause were combined in 1 categorical variable 

with 4 groups: (1) artificial menopause, (2) natural menopause before the age of 48 years, (3) 

natural menopause between ages 48 and 52 years, or (4) natural menopause after the age of 

52 years.

Study sample

To obtain the study samples for the analyses, we excluded 4 women who used HRT at the 

time of blood drawing, leaving 559 subjects (Figure 2). Because estradiol levels were meas-

ured as part of several blood measurements and small amounts of plasma were available, we 

randomly missed total estradiol levels for 147 subjects. Thus, 412 subjects for the analyses 

on total estradiol levels were included. Because of missing data on binding protein levels 

(n=101), we had bioavailable and free-estradiol levels in 311 subjects. These 311 subjects with 

bioavailable and free-estradiol levels were similar to the 248 subjects who were dropped from 

these analyses for age, hippocampal volume, and delayed recall score.

Data analysis

All analyses were performed in women and men separately. We first investigated whether 

there was a threshold in the relation between estradiol level and outcome by analysis of 

covariance (ANCOVA). Tertiles of total, bioavailable, and free estradiol were the group vari-

able and we calculated adjusted mean hippocampal volumes and delayed recall scores in 

each tertile. Three consecutive models were used. The first adjusted for age and —in the 

hippocampal analyses— midsagittal area to account for intracranial volume.23 After separately 

investigating several covariates, it appeared as if the BMI was the strongest confounder in the 

associations so the second model was adjusted, in addition to age and midsagittal area, for 

BMI. In the third model we additionally entered educational level, smoking, alcohol use, CES-

D score, APOE genotype, and, for women, age at menopause, type of menopause, and use 

of ever taking HRT. Because the ANCOVA did not suggest a specific threshold in the relation 

between estradiol levels and outcome, we performed a multivariate linear regression analysis 
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to calculate the difference in hippocampal volume and delayed recall score per SD increase 

in estrogen levels. To investigate whether there was an indication of differential associations 

in age strata (<70 years and ≥70 years) or APOE genotype, we included in the multivariate 

linear model an interaction term and performed stratifi ed analyses. Finally, we repeated the 

analyses excluding women with a history of HRT use.

Figure 2. Description of study sample

Results

Of the 210 women and 202 men with total estradiol measurements, 24 women and 16 men 

had no hippocampal volume assessment (because they developed claustrophobia during the 

MRI) and 6 women and 8 men had no reliable delayed recall data (mostly owing to motiva-

tional problems). Characteristics of the study sample are given in Table 1. There were no differ-

ences in the characteristics between subjects with total estradiol levels and subjects without 
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total estradiol levels. Estradiol levels of women were lower than those of men, reflecting the 

fact that women were postmenopausal and were not taking HRT at time of venipuncture.

Table 1. Characteristics of study sample 

Characteristic
Women 

(n=210)

Men

(n=202)

Subjects without total 

estradiol levels (n=147)

Age, years 70 ± 8 69 ± 8 71± 8

BMI, kg/m2 26.8 ± 3.9 26.1 ± 2.9 26.3 ± 3.2 

Primary education, % 37 23 34

Current smoking, % 16 24 23

Alcohol, g/day 7.6 ± 11.5 17.4 ± 10.9 13.7 ± 17.0

CES-D score 7.0 ± 6.6 4.6 ± 5.3 5.0 ± 5.7

APOE genotype, % ε4 carrier 27 32 27

MMSE score 27.6 ± 2.3 27.8 ± 2.1 27.7 ± 2.0

Total estradiol

   median (range), pmol/l
13.4 (0.0-65) 45.3 (0.0-157) -

Bioavailable estradiol

   median (range), pmol/l*
8.8 (0.0-49) 34 (0.0-120) -

Free estradiol

   median (range), pmol/l*
0.32 (0.00-1.73) 1.22 (0.00-4.20) -

Midsagittal area, cm2† 143.1 ± 8.8 155.2 ± 9.9 149.3 ± 11.1

Hippocampus, ml† 6.17 ± 0.81 6.59 ± 0.89 6.36 ± 0.88

Delayed recall score‡ 6.2 ± 2.8 5.5 ± 2.4 5.4 ± 2.6

Values are means ± standard deviation or percentages unless otherwise specified

*Values were present in 162 women and 149 men

†Values were present in 186 women and 186 men

‡Values were present in 204 women and 194 men. Higher scores reflect better performance

In women, estradiol levels were negatively correlated with age and positively correlated with 

BMI. In men, estradiol levels were negatively correlated with age and positively correlated 

with alcohol intake and CES-D score (Table 2). Hippocampal volumes and delayed recall 

scores decreased with increasing age (both in women and men, –0.03 ml/y and –0.1 words 

per year).



Chapter 3.1

74

Figure 3. Adjusted hippocampal volumes (SE) (A and C) and delayed recall (SE) (B and D) across tertiles of 

total, bioavailable, and free-estradiol levels in women and men, respectively. A and B, Means are adjusted 

for age, educational level, BMI, alcohol, smoking, CES-D, type of menopause, age at menopause, ever 

use of HRT, APOE genotype, and the hippocampal volumes–midsagittal area. Tertile ranges (in picomoles 

per liter) were for total estradiol levels 0.0-7.3, 7.3-19, and 20-65; for bioavailable estradiol levels 0.0-5.2, 

5.2-14, and 14-49; and for free-estradiol levels 0.00-0.19, 0.19-0.50, and 0.50-1.73. Asterisks indicate 

statistically significantly (P<0.05) smaller than lowest tertile. C and D, Means are adjusted for age, edu-

cational level, BMI, alcohol, smoking, CES-D, APOE genotype, and the hippocampal volumes–midsagittal 

area. Tertile ranges (in picomoles per liter) were for total estradiol level 0.0-36, 36-52, and 52-157; for 

bioavailable estradiol level 0.0-27, 27-40, and 40-120; and for free-estradiol level 0.00-0.97, 0.97-1.49, and 

1.49-4.20
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Table 2. Correlations between several continuous variables in women (n=210) and in men (n=202)

Total estradiol Age Education BMI
Alcohol 

intake
CES-D

Age 

   (per year)

-0.49*

-0.62*

Education

   (per grade)

-0.08 -1.02*

-0.87 -0.22

BMI 

   (per kg/m2)

0.97* 0.24 -0.05*

1.04 0.04 -0.06

Alcohol intake 

   (per grams/day)

0.01 -0.13* 0.01 -0.03

0.33* -0.04 -0.00 0.02

CES-D 

   (per point)

-0.27 0.20* -0.02 -0.04 0.02

0.77* -0.05 0.02 0.03 0.20

Midsagittal area 

   (per cm2)

0.23 -0.22* 0.02* 0.01 -0.05 -0.10*

0.14 -0.07 0.02 -0.01 -0.11 0.05

Values are unadjusted regression coefficients in women and in men (italic numbers). The variables in the 

left column are the independent variables and the variables in the upper row the dependent variables.

*P<0.05

Women

Estradiol level and hippocampal volume

In women, the age- and midsagittal-adjusted mean hippocampal volumes decreased across 

higher tertiles of total (SE) estradiol levels from 6.24 (0.10) ml to 6.22 (0.10) ml to 6.07 (0.10) 

ml, but there were no significant differences between tertiles. When the BMI was included as 

a covariate, the mean (SE) hippocampal volumes were 6.28 (0.10) ml; 6.21 (0.10) ml, and 6.04 

(0.10) ml, respectively, but differences were again not statistically significant. Figure 3A shows 

that after additional adjustments for all other covariates the negative association between 

the total estradiol level and hippocampal volume became statistically significant (difference 

between the highest and lowest tertile of total estradiol –0.29 ml [95% confidence interval 

(CI), –0.57 to –0.00]). When we analyzed the total estradiol level as a continuous measure, we 

found a nonsignificant decrease in hippocampal volume per SD increase in total estradiol level 

(Table 3). There was a nonsignificant inverse relation between the bioavailable estradiol level 

and hippocampal volumes (the age- and midsagittal-adjusted means of hippocampal volume 

across higher bioavailable estradiol tertiles was 6.22 (0.12) ml, 6.17 (0.11) ml, and 6.00 (0.11) 
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ml. When the BMI was included in the model, a significant smaller hippocampal volume was 

found in women with bioavailable estradiol levels in the highest tertile of bioavailable estradiol 

compared with the lowest tertile (difference, –0.37 ml [95% CI, –0.71 to –0.03]). Additional 

adjustments did not change this inverse relation (Figure 3A). When we analyzed bioavailable 

estradiol levels as a continuous measure, we found a nonsignificant decrease of hippocampal 

volume of –0.09 ml (95% CI, –0.25 to 0.06) per SD (10-pmol/L) increase. 

Table 3. Associations between total estradiol levels, hippocampal volumes and memory performance

Women Per increase of 1 SD (14 pmol/l) in total estradiol level 

Adjusted for Hippocampal volume (ml) Delayed recall

Age, midsagittal area* -0.01 (-0.12 to 0.10) -0.1 (-0.4 to 0.3)

Age, midsagittal area*, BMI -0.04 (-0.16 to 0.08) -0.1 (-0.5 to 0.3)

Age, midsagittal area*, BMI, 

education, alcohol intake, 

smoking, CES-D, APOE 

genotype, age and type of 

menopause, ever use of HRT

-0.06 (-0.18 to 0.06) -0.1 (-0.5 to 0.3)

Men Per increase of 1 SD (23 pmol/l) in total estradiol level

Adjusted for Hippocampal volume (ml) Delayed recall

Age, midsagittal area* 0.02 (-0.10 to 0.15) -0.4 (-0.7 to –0.0)

Age, midsagittal area*, BMI -0.01 (-0.05 to 0.03) -0.4 (-0.7 to 0.0)

Age, midsagittal area*, BMI, 

education, alcohol intake, 

smoking, CES-D, APOE 

genotype

0.04 (-0.09 to 0.18) -0.3 (-0.7 to 0.1)

Values are adjusted regression coefficients (95% CI) of the relation between total estradiol level and hip-

pocampal volume/delayed recall.

*Adjusted for only in the hippocampal analyses

The relation between free estradiol levels and hippocampal volumes was similar to that of 

bioavailable estradiol levels (Figure 3A). The inverse associations between estradiol levels and 

hippocampal volumes were primarily seen in the oldest age group (in age<70 years: per SD 
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increase in total estradiol level the fully adjusted difference in hippocampal volumes was 0.07 

ml [95% CI, –0.09 to 0.23]; in age ≥70 years: –0.24 ml [95% CI, –0.44 to –0.04]; P of interac-

tion term 0.04). The negative associations between estradiol level and hippocampal volumes 

were more pronounced in APOE ε4 carriers than in non-APOE ε4 carriers, although the inter-

action term was not statistically significant (Table 4).

Table 4. Associations between total estradiol levels and hippocampal volumes and memory performance 

in women according to APOE  ε4 strata

Hippocampal volumes

Adjusted for Non-APOE ε4 carrier APOE ε4 carrier P interaction term*

Age, midsagittal area, BMI, 

education, alcohol intake, 

smoking, CES-D, age and type 

of menopause, ever use of 

HRT

0.01  (–0.16 to 0.17) –0.25 (–0.46 to –0.03) 0.07

Delayed recall

Adjusted for Non-APOE ε4 carrier APOE ε4 carrier P interaction term*

Age, BMI, education, alcohol 

intake, smoking, CES-D, age 

and type of menopause, ever 

use of HRT

–0.10 (–0.61 to 0.41) 0.44 (–0.21 to 1.09) 0.29

Values are adjusted regression coefficients (95% CI) of the relation between total estradiol level (per 1 

SD increase) and hippocampal volume/delayed recall

* P-value of interaction term (APOE strata x total estradiol level) in the multivariate linear regression 

analysis

Estradiol level and memory

The age-adjusted delayed recall score decreased nonsignificantly across total estradiol tertiles 

from 6.5 (0.3) to 6.1 (0.3) to 6.1 (0.3) words. Figure 3B shows that additional adjustments for 

other covariates did not substantially change these results. The fully adjusted difference in 

delayed recall words between the highest and lowest tertile of total estradiol levels was –0.4 

(95% CI, –1.3 to 0.5). When we analyzed the total estradiol level as a continuous measure, 
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we found a nonsignificant decrease in delayed recall words (Table 3). There was a significant 

inverse relation between bioavailable estradiol tertiles and delayed recall (Figure 3B), although 

when we analyzed bioavailable estradiol levels continuously, we found a nonsignificant de-

crease in delayed recall words of –0.2 (95% CI, –0.7 to 0.2) per SD increase. The results were 

similar for the relation between the free estradiol level and delayed recall score (Figure 3B). 

Again, the inverse associations between the estradiol level and memory were stronger in the 

oldest age groups (data not shown). The associations were not different in APOE ε4 strata 

(Table 4). Exclusion of women who had used HRT in the past (n=17) did not change any of 

the above results.

Men

Estradiol level and hippocampal volume

In men, there was no association between estradiol levels and hippocampal volumes (age and 

midsagittal-adjusted hippocampal volumes in total estradiol tertiles: 6.55 [0.11] ml, 6.68 [0.11] 

ml, and 6.52 [0.11]) ml). Additional adjustments for the other covariates did not change these 

estimates (Figure 3C and Table 3). There was also no association between bioavailable or free-

estradiol levels and hippocampal volume (Figure 3C). There were no differential associations 

in age strata or in APOE ε4 strata (data not shown).

Estradiol level and memory

When we investigated the relation between estradiol levels and memory performance in 

men, a similar pattern as in women emerged. The age-adjusted delayed recall scores de-

creased across increasing total estradiol tertiles from 6.1 (0.3) to 5.4 (0.3) to 5.1 (0.3) words. 

When we analyzed the total estradiol level as continuous measure, we found a decrease in 

delayed recall with increasing levels (Table 3). Additional adjustments for covariates did not 

change this association (Figure 3D and Table 3). The association of delayed recall score with 

bioavailable and free estradiol levels showed a similar pattern as with the total estradiol level 

(Figure 3D). There were no differences in the associations in age strata or in APOE ε4 strata 

(data not shown).

Discussion

In this population-based study in elderly subjects with no dementia, we could not support the 

hypothesis that higher endogenous levels of estradiol are associated with larger hippocampal 

volumes on MRI and better memory performance. Women with higher estradiol levels had 

smaller hippocampal volumes and poorer memory performance than women with lower lev-

els. In men, there was no relation between estradiol level and hippocampal volumes, but 
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memory performance was worse in those with higher levels of total estradiol compared with 

those with lower levels.

The strengths of this study are that it is population based and involves a large number of 

volumetric hippocampal assessments. Our study has several methodological limitations that 

need to be discussed. First, owing to the small amounts of plasma available, we had a large 

number of missing data on bioavailable and free-estradiol levels. Although these missing data 

were random, the smaller sample size will have resulted in less precise estimates of the as-

sociations. Second, blood was drawn several years before MRI and memory performance. It 

is difficult to determine if this influenced our results. It may have led to biased associations if 

subjects with estradiol levels on one side of the distribution selectively died between blood 

drawing and MRI measurement. This does not seem likely, however, because the interval be-

tween blood drawing and MRI was not long, and the relation between endogenous estradiol 

levels and mortality is not strong.24 Third, HRT use in the Netherlands is infrequent compared 

with, for example, the United States. Our results were based on observations in non-HRT 

users and they may not be generalizable to HRT users.

The most consistent support for the hypothesis that estrogens prevent dementia comes 

from animal studies that showed that estrogens protect against cell loss in the hippocam-

pus, increase neurite outgrowth, and have antioxidative properties.3, 25 In humans, observa-

tional studies on endogenous levels of estrogen in relation to cognitive function have been 

inconclusive. Some reported negative effects of higher endogenous estrogen levels on de-

layed visual reproduction26 and attention tasks27 in women and on the results of the MMSE, 

memory tasks,28 and spatial performance29 in men, while others showed in women posi-

tive effects of higher endogenous estrogen levels on verbal memory30 or cognitive decline.31 

Population-based studies on exogenous estrogens showed that women who used HRT had a 

reduced risk of AD1, 2, 32 but these studies may have been confounded by healthy-user effect. 

Also, other studies did not confirm this observation.33-35 Recent randomized trials with HRT 

in patients with AD showed no36-38 or a beneficial effect of exogenous estrogen on cognitive 

decline.39 Together, the biological plausibility of the estrogen hypothesis in dementia is its 

strongest plea, whereas studies in humans are far from conclusive. Our results are contrary 

to what we expected in that we observed a small negative effect of higher estradiol levels on 

both hippocampal volumes in women and memory performance in women and men. As yet, 

we do not have a biological plausible explanation for these results. When interpreting these 

data, one has to keep in mind that the endogenous levels in our study sample of postmeno-

pausal women are much lower than the levels obtained after supplemental use of exogenous 

estrogens. Therefore, our data do not reject the possibility that exogenous estrogens are 

related to larger hippocampal volumes and better memory performance.
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Conclusion

This study does not support the hypothesis that higher endogenous estrogen levels in older 

women and men without dementia are associated with larger hippocampal volumes and 

better memory performance.
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Chapter 3.2

Estrogen receptor α polymorphisms, dementia and atrophy of the 
medial temporal lobe

The role of estrogens in Alzheimer’s disease is controversial. We investigated the association 

between well-recognized, and potentially functional, polymorphisms in the estrogen recep-

tor (ER) α gene and risk of Alzheimer’s disease in a large prospective study of 6056 Cauca-

sian elderly aged 55 years and over. Furthermore, we performed a meta-analysis based on 

published results of 5 other studies. In a subset of 468 non-demented elderly we assessed 

volumes of the hippocampus and amygdala, which have a high density of ERα, by means of 

brain magnetic resonance imaging (MRI). During a total of 35405 person-years of follow-up 

(mean per persons 5.8 years), 312 new cases of dementia were detected of whom 230 were 

diagnosed with Alzheimer’s disease. Neither the PvuII nor the XbaI polymorphism or haplo-

types thereof were associated with the risk of all-cause dementia or Alzheimer’s disease, 

which was confirmed by the meta-analysis. In contrast, we found that non-demented women 

who carried the PvuII p allele or haplotype ‘px’ had smaller amygdalar volumes on MRI in 

an allele-dose dependent fashion. Further studies are required to investigate whether this 

smaller amygdalar volume has functional significance.
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Introduction

In the last decade of the 20th century numerous cellular, molecular and epidemiological studies 

suggested a protective effect of estrogen on Alzheimer’s disease. Estrogen protects against 

neuronal death,1 improves survival of hippocampal neurones,2 acts as an antioxidant,3 and 

stimulates cerebral blood flow.4 Observational studies reported that postmenopausal women 

who used estrogen replacement therapy have a lower risk of dementia.5, 6 Conversely, a large 

randomised trial on estrogen replacement therapy for preventing Alzheimer’s disease was 

negative.7 This, in turn, is in line with findings from our group that higher endogenous estradiol 

levels, if anything, are associated with a higher risk of dementia.8

Estrogens exert most of their effects through intracellular activation of estrogen receptors. 

There are two known forms of estrogen receptors: the estrogen receptor α (ERα) and the 

estrogen receptor ß, both expressed in the brain.3, 9 Several studies examined the PvuII and 

XbaI polymorphisms in the gene for ERα in association to Alzheimer’s disease with different 

results.10-16 Except for one prospective study,10 most reports were based on case-control se-

ries with inherent limitations of selection.11-16 The aim of the current study was to investigate 

polymorphisms in the ERα gene and risk of dementia in a large prospective population-based 

cohort study in the Netherlands. We included a meta-analysis of all published data. In a sub-

set of the cohort, MRI of the brain was made to assess volumes of the hippocampus and 

amygdala. The hippocampus and amygdala are structures in the medial temporal lobe that 

express ERα at relatively high levels.9 If ERα polymorphisms are associated with macroscopic 

changes in brain volume, we would expect to find it for these two structures. An additional 

rationale for studying these structures is that hippocampal and amygdalar atrophy on MRI are 

seen early in Alzheimer’s disease.17, 18 The putative risk on Alzheimer’s disease associated with 

ERα polymorphisms could be mediated through effects on the hippocampus and amygdala. 

The ε4 allele of the apolipoprotein E (APOE) is a well-known genetic risk factor for Alzheimer’s 

disease,19 and estrogens influence regulation of APOE synthesis.20 Previous reports suggest-

ed differential effects of the ERα genotype on risk of Alzheimer’s disease within APOE ε4 or 

non-ε4 carriers,12, 14 therefore we performed stratified analyses according to APOE genotype.

Methods

Study population

This study is based on the Rotterdam Study, a large prospective population-based study in 

7983 elderly aged 55 years or older that aims to assess determinants of diseases in later life.21 

The Medical Ethics Committee of Erasmus Medical Center approved the study protocol and 

participants gave written informed consent. Baseline examinations took place from 1990 to 
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1993. A trained research assistant visited participants at home and obtained information on 

medication use, medical history and determinants of diseases. Participants were invited to 

visit the research center for clinical examinations by the research physicians. Re-examinations 

were performed in 1993 to 1994 and 1997 to 1999. Of the 7983 participants at baseline, 7528 

(94.3%) were screened and examined for prevalent dementia. There were 482 participants 

diagnosed with prevalent dementia.22 Thus, 7046 participants comprised the cohort at risk for 

dementia of whom 6934 were of Caucasian origin.

Dementia diagnosis

Participants were examined for presence of dementia at the research center at follow-up 

visits. A three-step protocol was used as described in detail elsewhere.23 Briefly, all partici-

pants were screened with the Mini-Mental State Examination (MMSE) and the Geriatric Men-

tal State schedule (GMS), organic level. Screen positives (persons scoring below 26 on the 

MMSE or more than 0 on the GMS) underwent cognitive testing with the Cambridge ex-

amination for mental disorders in the elderly, which included an informant interview. Persons 

suspected of dementia were examined by a neurologist and underwent extensive neuropsy-

chological testing. In addition to this in-person screening,24 all participants were continuously 

monitored for development of dementia through linkage of the general practitioners’ medical 

record system to the database of the Rotterdam Study. We also consulted the Regional In-

stitute for Outpatient Mental Health Care (RIAGG) at a regular basis and checked all relevant 

reports. Surveillance of the population through the general practitioner and RIAGG reports 

continued up to December 31, 1999. A diagnosis of dementia and its subtypes were made 

according to international standard criteria by a panel consisting of a neurologist, neuropsy-

chologist and study physician.25, 26 

Subset with MRI examinations

In 1995 to 1996, we made a random selection of 965 living members of the cohort in strata 

of age (5-years strata from 60 to 90) and sex for participation in the Rotterdam Scan Study, 

designed to study age-related brain changes on MRI.27 As part of the eligibility criteria, we ex-

cluded persons who had developed dementia between baseline and time of selection (n=17) 

and persons who had contraindications to undergo MRI (n=116). This left 832 participants 

eligible. Complete MRI data, including a three-dimensional (3D) volumetric MRI sequence 

covering the whole brain, was obtained in 511 persons. 

MRI procedures 

We reformatted coronal brain slices (contiguous 1.5-mm slices) and a middle sagittal slice 

from the 3D MRI sequence. The coronal slices were orientated perpendicular to the long 
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axis of the hippocampus. The procedure of segmenting the hippocampus and amygdala on 

coronal slices has been described.28 The left and the right hippocampus and amygdala were 

manually outlined on each slice with a mouse-driven cursor.29 Absolute volumes (ml) were 

calculated by multiplying the areas on each slice by the slice thickness and left and right side 

were summed. As a proxy for head size, we measured on a reformatted middle sagittal MRI 

slice the intracranial cross-sectional area.29 We corrected for head size differences across 

individuals by dividing the uncorrected volumes by the subject’s calculated head size area 

and subsequently multiplying this ratio by the average head size area (men and women sepa-

rately).18, 30 

ERα polymorphisms

Genomic DNA was isolated from peripheral leucocytes by standard procedures. Genotypes 

were determined using the Taqman allelic discrimination assay. Primer and probe sequences 

were optimized using the single nucleotide polymorphism assay-by-design service of Applied 

Biosystems. For details see http://store.appliedbiosystems.com. Reactions were performed 

on the Taqman Prism 7900HT 384 wells format. The coding for the ERα polymorphisms PvuII 

and XbaI follows that of previous studies on the ERα polymorphisms. Capital “P” and “X” 

stands for absence of a restriction site (indicating respectively nucleotide C and nucleotide 

G) and lower case letter “p” and “x” stands for presence of restriction site (nucleotide T and 

nucleotide A). Persons were classified as either non-carrier, heterozygous or homozygous for 

the allele. To increase genetic resolution we created also PvuII-XbaI haplotypes as reported 

previously.31 Haplotype alleles were coded as haplotype numbers 1 through 4 in order of de-

creasing frequency in the population (1=px, 2=PX, 3=Px, and 4=pX). We examined the poly-

morphisms PvuII and XbaI separately in relation to outcome to make our results comparable 

with earlier studies on dementia and examined haplotype 1 based on previous work from our 

group showing this to be the risk allele of osteoporosis.31 

Analytical study samples

We missed genotyping of the ERα polymorphism in some persons because no blood was 

drawn or there were problems in the technical processing of the blood samples. Of the 6934 

members of the cohort at risk for dementia, we determined the PvuII and XbaI genotype in 

6056. The 878 persons without genotype were on average 4.8 years older (P<0.001); and 

more frequently women (67% versus 59%; P<0.001) compared to the 6056 participants with 

genotype. Of the 511 participants in the subset with MRI examinations, we determined the 

ERα genotype in 468 participants. The remaining 43 participants were similar in mean age 

(P=0.31) but more frequently women (63% versus 48%, P=0.06) compared to the 468 par-

ticipants with genotype.
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Other measurements

At baseline examinations, we ascertained by interview or physical examination level of educa-

tion (primary versus lower vocational to university education), smoking status (current, former 

or never), body mass index (weight divided by the square of the height), age at menopause 

(either natural or surgically induced)32 and use of estrogen replacement therapy (ever versus 

never). APOE genotype was determined in 5281 participants of the total cohort and in 404 

participants of the subset with MRI examination.33 We classified participants into those with 

or without the ε4 allele. 

 

Data analysis

Analyses were done separately in men and women. We compared baseline characteristics in 

ERα genotype using one-way analysis of variance or χ2 analysis in the total study cohort. The 

hazard ratios of dementia and Alzheimer’s disease were estimated using a Cox proportional 

hazard model in which time scale is the age of participants. Left truncation of the cohort was 

accounted for by using the “counting process” notation available in S-Plus.34 In the subset 

with MRI examinations, we used analysis of covariance to compute age adjusted means of 

the brain volumes on MRI within genotype. Because preliminary analyses did not suggest 

a dominant or recessive effect of the polymorphisms, we analyzed the association using an 

allele-dose model. The genotype was entered as a linear term in the model to yield P-values of 

the allele-dose trend. Besides age, we additionally included the following confounders in the 

analyses that have previously been associated to dementia: level of education,22 body mass 

index,35 smoking,36 age at menopause,37 and ever use of estrogen replacement therapy.38 

Meta-analysis

We identified studies on the ERα polymorphisms and Alzheimer’s disease by searching 

Medline (1966 to May 2003) using “Alzheimer’s disease” and “estrogen receptor” as key 

words. The reference list of each paper was checked for additional studies. Seven papers 

were identified10-16 of which five investigated Caucasian populations.10, 13-16 These five papers 

reported on six independent case-control series and one prospective study. Odds ratios (OR) 

of Alzheimer’s disease with 95% confidence interval (CI) were computed for each study. In 

case a paper did not report results in men and women separately we contacted the authors 

to provide these data. From one author we could not retrieve the data and this study was 

excluded.16 The meta-analyses were based on the log odds ratios and their standard errors 

and we used random effects models to compute the combined OR of Alzheimer’s disease 

across ERα genotype.
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Results

Allele frequencies of the ERα polymorphisms were in Hardy-Weinberg equilibrium and similar 

to frequencies found in other Caucasian populations (Table 1).39, 40

Table 1. ERα polymorphisms (PvuII and XbaI) in total study sample and in subset with MRI examina-

tions

Total sample (n=6056) Subset with MRI (n=468)

Men 

(n=2483)

Women 

(n=3573)

Men 

(n=244)

Women 

(n=224)

PvuII*

P 2326 (47) 3312 (46) 235 (48) 199 (44)

p 2640 (53) 3834 (54) 253 (52) 249 (56)

PP 539 (22) 780 (22) 58 (24) 39 (17)

Genotype Pp 1248 (50) 1752 (49) 119 (49) 121 (54)

pp 696 (28) 1041 (29) 67 (27) 64 (29)

Hardy-Weinberg† 0.64 0.40 0.72 0.16

XbaI*

X 1720 (35) 2487 (35) 183 (38) 157 (35)

x 3246 (65) 4759 (65) 305 (62) 291 (65)

XX 290 (12) 445 (13) 37 (15) 23 (10)

Genotype Xx 1140 (46) 1597 (45) 109 (45) 111 (50)

xx 1053 (42) 1531 (43) 98 (40) 90 (40)

Hardy-Weinberg† 0.49 0.37 0.47 0.19

*Numbers (%).

†P-value for test of Hardy-Weinberg equilibrium

Baseline characteristics of the total study sample and of the subset with MRI examinations 

are given in Table 2. Characteristics across genotype were analyzed in the total study sample. 

There were no significant differences in age, educational level, smoking, body mass index or 

Allele

Allele



Estrogen receptor α polymorphisms, dementia and atrophy

89

ever use of hormone replacement therapy across genotype. Women with the pp genotype 

had a 0.5 years later age of menopause compared to women with the PP genotype (P = 0.03), 

which confirms our previous report in a smaller part of the cohort.32

Table 2. Baseline characteristics of the total study sample and of the subset with MRI examinations

Total sample (n=6056) Subset with MRI (n=468)

Characteristic

Men

(n=2483)

Women

(n=3573)

Men

(n=244)

Women

(n=224)

Age, yr 67.9 ± 7.9 69.8 ± 9.2 68.7 ± 7.8 68.7 ± 8.3

Primary education only, % 25 44 22 38

Current smoker, % 29 18 22 19

Body mass index, kg/m2 25.8 ± 3.7 26.8 ± 4.1 26.0 ± 2.7 26.7 ± 3.9

Age at menopause, yr - 48.8 ± 5.0 - 48.7 ± 5.1

Ever use of HRT, % - 10 - 9

APOE, ε4 carriers, % 28 28 31 28

MMSE, mean score 27.8 ± 1.7 27.5 ± 2.0 27.9 ± 1.8 27.7 ± 2.2

Values are means ± SD or percentages

 

The MMSE score at baseline was similar across genotype. After baseline, during 35405 per-

sons-years of follow-up (mean per person 5.8 years), 312 participants developed dementia. 

A diagnosis of probable Alzheimer’s disease was made in 230 participants. We found no as-

sociation between ERα polymorphisms and risk of all-cause dementia or Alzheimer’s disease, 

either in men or women (Table 3). This was corroborated by the meta-analysis (Figure 1). 

Additional adjustments for educational level, smoking, body mass index, age at menopause 

and use of estrogen replacement therapy did not change our findings. There was also no as-

sociation between the ER α polymorphisms and dementia when we separately looked within 

APOE non-ε4 carriers or ε4 carriers (data not shown). 
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In the subset with MRI examinations (n=468), we found smaller hippocampal and amygdalar 

volumes on MRI in women with the pp or xx genotype compared to women with the PP or 

XX genotype (Table 4). There was an allele dose effect: per allele copy of the “p” allele the 

amygdala was –0.17 ml smaller (95% CI –0.30 to –0.05) and per allele copy of the “x” allele 

–0.17 ml (95% CI –0.30 to –0.04). The explained variance in amygdalar volume by the PvuII 

polymorphism above age was 3% (R square change 0.030, F (1,221)=7.11, P=0.008). There 

were 25 cases of incident dementia in the subset with MRI and excluding them did not 

change the results. There was no association between the ERα polymorphism and brain vol-

umes in men. Additional adjustments for educational level, smoking, body mass index, age at 

menopause and use of estrogen replacement therapy did not change the results. There was 

no difference in the results when we stratified by APOE genotype. 

Table 4. The PvuII and XbaI ERα polymorphism and brain volumes on MRI in the subset (n=468)

Hippocampal volumes (ml) Amygdalar volumes (ml)

Men

(n=244)

Women

(n=224)

Men

(n=244)

Women

(n=224)

PvuII 

PP 6.56 ± 0.12 6.32 ± 0.13 4.73 ± 0.10 4.50 ± 0.10

Pp 6.52 ± 0.08 6.22 ± 0.07 4.74 ± 0.07 4.45 ± 0.06

pp 6.56 ± 0.11 6.06 ± 0.10 4.82 ± 0.09 4.18 ± 0.08

Trend 0.99 0.10 0.49 0.008

XbaI 

XX 6.38 ± 0.15 6.28 ± 0.16 4.72 ± 0.12 4.51 ± 0.13

Xx 6.57 ± 0.09 6.28 ± 0.08 4.73 ± 0.07 4.47 ± 0.06

xx 6.56 ± 0.09 6.06 ± 0.08 4.81 ± 0.07 4.24 ± 0.07

Trend 0.41 0.08 0.41 0.01

Values are age adjusted mean volumes (standard error) and P values for trend analyses

The haplotype 1 (px) genotype followed exactly the PvuII genotype and therefore the analyses 

on haplotype 1 in association with outcome were similar as we report for the PvuII polymor-

phism.
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Discussion

In this report based on a large population-based study and meta-analysis we show no effect 

of the PvuII and XbaI polymorphisms in the ERα gene on risk of dementia. However, we ob-

served women with the p or x allele or haplotypes thereof to have smaller amygdalar volumes 

on MRI compared to women with the P or X allele. There was no differential effect according 

to APOE genotype.

Potential dangers of genetic association studies are population stratification or heterogeneity. 

This particularly holds for case-control studies in persons of mixed racial origin. In our study, 

this has played no role since all subjects were of Dutch Caucasian origin and can be consi-

dered ethnically homogeneous. Furthermore, allele frequencies were similar to those found 

in studies of other Caucasian subjects.40 

The disruption of ERα in ER-null mice causes memory impairment,41 a proinflammatory phe-

notype of microglia localized in the hippocampus and amygdala,42 and abolishment of the 

protective effect of estradiol on ischaemic brain injury.43 Furthermore, brains of patients with 

Alzheimer’s disease have less hippocampal neurons stained with ERα indicating a poten-

tial role of dysfunctional ERα in the pathogenesis of Alzheimer’s disease.44 The PvuII-XbaI 

polymorphisms in the ERα gene are attractive polymorphisms to investigate in association to 

Alzheimer’s disease as they have been implicated in estrogen-related diseases such as oste-

oporosis,31 heart disease,45 and breast cancer.46 Also, we recently showed that women carry-

ing the px haplotype were shorter. Given that the PvuII and XbaI polymorphisms are in strong 

linkage disequilibrium31 it is difficult to determine which of the two polymorphic sites is driving 

the associations. Both of them have an intronic localization and functional consequences on 

a biochemical level have still not been established. Interestingly though, Herrington et al.47 re-

cently showed that the T-allele of the PvuII polymorphism –corresponding to the “p” allele in 

our analyses– lacks a binding site for the transcription factor bMyb, which might result in low-

er ERα transcription. Nuclear ERα receptors bind to estrogen response elements in promotor 

regions of target genes which in turn stimulate expression of genes thought to be involved in 

neuroprotection.48 Therefore, neurons expressing low ERα may be posed vulnerable to toxic 

events. Moreover, women with the p allele have a later age of menopause as shown in the 

current sample which extends our previous smaller sample32 and later age of menopause is 

associated with a higher risk of Alzheimer’s disease.37 Our findings however did not support 

the hypothesis that ERα PvuII-XbaI genotypes are associated to vulnerability to Alzheimer’s 

disease. We did find the ERα PvuII-XbaI genotype to be associated to amygdalar volume in 

women. This could be a false positive finding. However, the population-based design, the size 

of the sample and the allele-dose effect of the relation supports a true association. Further-

more, genotype effects were similar, although weaker, for the hippocampus. This is in striking 
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similarity with the higher density of ERα in the amygdala compared to the hippocampus.9, 49 

Although amygdalar atrophy is found in early Alzheimer’s disease,18 exclusion of people who 

developed Alzheimer’s disease during follow-up did not change the results. This limits the pos-

sibility that early Alzheimer’s disease accounted for the findings on the amygdala. Does this 

smaller amygdalar volume then have any functional significance? The amygdala has several 

functions in emotional behavior and fear conditioning and amygdalar atrophy is reported in 

anxiety disorders.50-53 One may speculate that amygdalar atrophy could be the structural link 

between recently reported associations of polymorphisms in the ERα gene and anxiety.50, 51, 

54 Future studies should include both amygdala volume and psychometric assessments of 

anxiety to test this hypothesis.
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Chapter 3.3

Diabetes mellitus and medial temporal lobe atrophy

Aim/hypothesis: Type 2 diabetes increases the risk not only of vascular dementia but also of 

Alzheimer’s disease. The question remains whether diabetes increases the risk of Alzheimer’s 

disease by diabetic vasculopathy or whether diabetes influences directly the development of 

Alzheimer neuropathology. In vivo, hippocampal and amygdalar atrophy on brain MRI are good, 

early markers of the degree of Alzheimer neuropathology. We investigated the association 

between diabetes mellitus, insulin resistance and the degree of hippocampal and amygdalar 

atrophy on magnetic resonance imaging (MRI) accounting for vascular pathology.

Methods: Data was obtained in a population-based study of elderly subjects without demen-

tia between 60 to 90 years of age. The presence of diabetes mellitus and, in non-diabetic 

subjects, insulin resistance was assessed for 506 participants in whom hippocampal and 

amygdalar volumes on MRI were measured. We assessed the degree of vascular morbidity 

by rating carotid atherosclerosis, and brain white matter lesions and infarcts on MRI.

Results: Subjects with diabetes mellitus had more hippocampal and amygdalar atrophy on 

MRI compared to subjects without diabetes mellitus. Furthermore, increasing insulin resis-

tance was associated with more amygdalar atrophy on MRI. The associations were not due to 

vascular morbidity being more pronounced in persons with diabetes mellitus.

Conclusions/interpretation: Type 2 diabetes is associated with hippocampal and amygdalar 

atrophy, regardless of vascular pathology. This suggests that type 2 diabetes directly influ-

ences the development of Alzheimer neuropathology.
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Introduction

Type 2 diabetes increases the risk of stroke1 and vascular dementia.2 Recently, patients with 

type 2 diabetes were found to have an increased risk of the most common form of dementia, 

Alzheimer’s disease.3, 4 The pathophysiological mechanism of the relation between diabetes 

mellitus and Alzheimer’s disease is not clear. Diabetic vasculopathy can cause cerebrovascu-

lar brain damage, which is frequently found in patients with Alzheimer’s disease5 However, 

other, more direct effects of diabetes on the development of Alzheimer neuropathology can 

also be involved. Advanced glycation end products increase aggregation of proteins involved 

in Alzheimer’s disease.6 Furthermore, dysfunction of insulin signalling in the brain has been 

implicated in the pathogenesis of Alzheimer’s disease.7 The neuropathology of Alzheimer’s 

disease occurs with greatest severity and in an early stage of the disease in the hippocampus 

and amygdala, brain structures in the medial temporal lobe.8 In vivo assessment of hippocam-

pal volume on magnetic resonance imaging (MRI) of the brain provides a good estimate of the 

degree of Alzheimer neuropathology, even in elderly subjects without clinical symptoms of 

dementia.9 Several studies show that patients with mild Alzheimer’s disease have smaller vol-

umes of the hippocampus10-12 and amygdala13, 14 on MRI compared to healthy control subjects. 

We examined the association between diabetes mellitus, insulin resistance and hippocampal 

and amygdalar atrophy on MRI using these as early MRI markers of Alzheimer’s disease. We 

accounted for atherosclerosis and cerebrovascular disease to examine whether any associa-

tion was caused by concomitant vascular disease.

Methods

Participants

The Rotterdam Study is a large population-based cohort study in the Netherlands that in-

vestigates the prevalence, incidence and determinants of chronic diseases in the elderly.15 

Baseline examinations were done in 1990 to 1993. In 1995 to 1996, we randomly selected 

965 living members (60-90 years of age) of the cohort in strata of sex and age (5 years) to 

participate in the Rotterdam Scan Study, designed to investigate age-related brain abnormali-

ties on MRI.16 After excluding individuals who were demented (n=17)17 or had MRI contrain-

dications (n=116), 832 people were eligible and invited. Among these, 563 participants gave 

their written informed consent and underwent MRI scanning of the brain (participation rate: 

68 %). Participants were in general healthier than non-participants.18 The study protocol was 

approved by the medical ethics committee of the Erasmus Medical Center, Rotterdam, the 

Netherlands.
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Assessment of diabetes mellitus and insulin resistance

Presence of diabetes mellitus was assessed at the baseline of the Rotterdam Study (1990-

1993) and at time of MRI (1995-1996). Participants where considered to have diabetes mellitus 

if they reported use of oral anti-diabetic treatment or of insulin, or if they had a random serum 

glucose concentration greater than or equal to 11.1 mmol/l. In addition, if a post-load glucose 

concentration (2 h after a glucose drink of 75 g in 200 ml water) at baseline was greater than 

or equal to 11.1 mmol/l the participant was also considered to have diabetes mellitus. Glucose 

concentrations were measured by the glucose hexokinase method. Insulin resistance in non-

diabetic subjects at baseline was assessed by the ratio of the post-load insulin concentration 

(Medgenix, Brussels, Belgium) over post-load glucose concentration.

MRI procedures

In 1995 to 1996, standard T1, T2 and proton-density weighted MR sequences of the brain 

were made using a 1.5 Tesla MR unit (VISION MR, Siemens, Erlangen, Germany).19 After 

these sequences were finished, an additional custom-made three-dimensional MRI sequence 

of the whole brain was acquired (named half-Fourier acquisition single-shot turbo spin echo 
20). This three-dimensional MRI sequence was used for later volumetric assessments of the 

hippocampus and amygdala. A total of 52 participants developed claustrophobia during the 

MRI scanning period, leaving 511 participants with a completed three-dimensional MRI se-

quence.

Hippocampal and amygdalar volumes on MRI

For the 511 participants with a three-dimensional MRI sequence, we reformatted a series of 

coronal brain slices (contiguous 1.5-mm slices) aligned to be perpendicular to the long axis of 

the hippocampus and the middle sagittal slice. The procedure of segmenting the hippocam-

pus and amygdala has been described in detail.20 Briefly, we manually traced the boundaries 

of the hippocampi and amygdalae using a mouse-driven pointer (Figure 1), which yielded 

outlined areas (mm2). We proceeded from posterior to anterior, starting on the slice where 

the crux of the fornices of the hippocampus was in full profile. We multiplied the summed 

areas with slice thickness (1.5-mm) to calculate estimates of the left and right hippocampal 

and amygdalar volume (ml). Total hippocampal and amygdalar volumes were calculated by 

summing the left and right hippocampal volume and the left and right amygdalar volume. As 

a proxy for head size, we measured on the middle sagittal MRI slice the intracranial cross-

sectional area.20, 21 We corrected for head size difference across the subjects as follows.13, 21 

First, each subject’s hippocampal or amygdalar volumes were divided by their measured head 

size area. Next, to obtain head size corrected, normalised volumes the ratios for each subject 

were multiplied by the average head size area (men and women separately).
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Figure 1. Coronal MRI slice on which the hippocampus (H) and amygdala (A) are depicted

Other measurements

We interviewed and gave physical examinations to the participants to obtain information on 

their: educational level (according to UNESCO22), BMI (weight divided by the square of the 

height), pack-years of cigarette smoking, blood pressure and serum total cholesterol.23 Mem-

ory function was evaluated with a 15-word learning test which consisted of three immediate 

learning trials and a delayed recall trial.19 For each participant, we calculated z-scores (individual 

test score minus mean test score divided by the standard deviation). We constructed a com-

pound score for memory performance by averaging the z-score of the three immediate recall 

trials and the delayed recall trial.19 Apolipoprotein E (APOE) genotyping yielded the following 

alleles: ε2, ε3, and ε4.24 We classified participants into those with and without a ε4 allele be-

cause the ε4 allele is a strong risk factor of Alzheimer’s disease.25 Because the presence of 

the ε2 allele can reduce the risk of Alzheimer’s disease,25 we excluded persons with genotype 

ε2ε4 (n=9) in the analyses considering APOE genotype. To assess carotid atherosclerosis, 

participants underwent ultrasonography of the carotid arteries.26 Presence of atherosclerotic 

plaques was determined at the common carotid artery, the carotid bifurcation, and the internal 

carotid artery at the left and right side and summed (range 0-6). The intima-media thickness 

was measured by longitudinal two-dimensional ultrasound of the anterior and posterior wall of 

both common carotid arteries. We calculated the mean of these four locations. Cerebral white 



Diabetes mellitus and medial temporal lobe atrophy

103

matter lesions were assessed on proton-density weighted axial MR images and were scored 

in the periventricular regions (range 0-9) and the subcortical regions (approximated volume).19 

Brain infarcts were defined as focal hyperintensities on T2 weighted images, and, if present 

in the white matter, with corresponding prominent hypointensity on T1.23

Data analysis

We missed information on the presence of diabetes mellitus in five participants, leaving a 

total of 506 participants for the analyses. We used multiple linear regression modelling to 

quantify the relation between diabetes, insulin resistance in non-diabetic subjects, and MRI 

volumes. Adjustments were made for age and sex. Additional adjustments included BMI, 

pack-years of cigarette smoking, blood pressure and serum cholesterol as co-variates. To in-

vestigate whether vascular disease was mediating any association between diabetes, insulin 

resistance and MRI volumes, we adjusted for carotid atherosclerosis, white matter lesions 

and brain infarcts on MRI. We repeated all analyses excluding subjects with infarcts on MRI. 

Finally, because the effect of diabetes on the risk of dementia might differ across APOE geno-

types,4 we studied possible effect modification by APOE genotype through stratified analyses 

(non-carrier of the ε4 allele versus carrier of the ε4 allele). Assumptions of the model were 

verified by residual diagnostics. A P-value of less than 0.05 was considered to be statistically 

significant.
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Results

Selected characteristics of the study cohort according to the presence of diabetes mellitus 

are given in Table 1. 

Table 1. Characteristics of participants with and without diabetes mellitus

Characteristic

No 

diabetes 

mellitus

(n=465)

Diabetes 

mellitus

(n=41)

Adjusted difference*

Age, years 73±8 77±8 4 (1; 6)

Women, % 50 34 -17 (-33; -0.6)

Education, primary only % 30 38 7 (-8; 20)

Memory performance, Z-score 0.03±0.92 -0.51±0.80 -0.33 (-0.60; -0.06)

Body mass index, kg/m2 26.2±3.7 26.8±2.9 0.7 (-0.5; 1.8)

Pack-years of cigarette smoking 20±25 24±24 2 (-5; 10)

Diastolic blood pressure, mmHg 77±11 75±13 -1 (-5; 3)

Systolic blood pressure, mmHg 146±20 146±21 -1 (-8; 5)

Total cholesterol, mmol/l 5.8±1.0 5.9±1.3 0.2 (-0.2; 0.5)

Carotid plaques, total number 1.6±1.6 2.6±1.6 0.7 (0.2; 1.3)

Intima-media thickness, mm 0.86±0.14 0.93±0.13 0.04 (-0.01; 0.08)

Periventricular white matter lesions, grade 2.7±2.2 3.6 (2.2) 0.4 (-0.2; 1.1)

Subcortical white matter lesions, ml 1.7±3.4 2.3 (3.6) 0.01 (-1.0; 1.0)

Brain infarcts, % 27 44 11 (-3; 25)

APOE, ε4 carriers, % 27 31 5 (-11; 21)

Postload insulin, pmol/l† 422.0±312.6 - -

Insulin resistance, pmol/mmol† 65.1±40.1 - -

Values are means ± standard deviation or percentages

*Age and sex adjusted difference (95% CI) in characterstic between participants with and without dia-

betes mellitus

†Present for 405 participants without diabetes
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In total, 41 participants (8.1%) had diabetes mellitus. Twenty-six of them were treated with 

anti-diabetic medication at time of MRI. Their median age when they were diagnosed with 

diabetes mellitus was 64 years (range 43-84), suggesting that they all had type 2 diabetes. Of 

note, although all participants were clinically free from dementia, persons with diabetes mel-

litus performed worse on memory tests (Table 1). Persons with diabetes mellitus had more 

atherosclerotic plaques in the carotid arteries (Table 1). They also had more cerebral white 

matter lesions on MRI, but this was not statistically significant after accounting for age and 

sex differences. Brain infarcts were 1.7 times (95% CI 0.8 to 3.3) more frequent in subjects 

with diabetes mellitus compared to those without diabetes mellitus, after adjusting for age 

and sex.

Subjects with diabetes mellitus had smaller hippocampal and amygdalar volumes on MRI 

(Figure 2). Diabetes mellitus had a similar effect on the left and the right-sided brain volumes 

separately. Additional adjustments for BMI, pack-years of cigarette smoking, blood pressure 

and cholesterol, did not change the results. 

Figure 2. Hippocampal volumes and amygdalar volumes (+standard error) on brain MRI in participants 

with diabetes (n=41) and without diabetes (n=465). Volumes are adjusted for age and sex and normalised 

to average head size

Although subjects with diabetes mellitus had more vascular disease, accounting for markers 

of vascular disease did not change the association between diabetes and hippocampal or 

amygdalar volumes (Table 2). Exclusion of participants with infarcts (n=142) did not change 

the results either. There was no difference in association between diabetes and MRI volumes 
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according to APOE strata. In non-carriers of the ε4 allele, the age and sex adjusted difference 

in hippocampal volume between persons with and without diabetes mellitus was –0.30 (95% 

CI –0.66 to 0.06). In carriers of the ε4 allele the difference in hippocampal volume was –0.31 

(95% CI –0.84 to 0.21). In non-carriers of the ε4 allele, the age and sex adjusted difference in 

amygdalar volume between persons with and without diabetes mellitus was –0.28 (95% CI 

–0.58 to 0.01). In carriers of the ε4 allele the difference in amygdalar volume was –0.41 (95% 

CI –0.86 to 0.04).

Table 2. Hippocampal and amygdalar volume on MRI in participants with and without diabetes mellitus 

accounting for markers of vascular disease

Volume difference between participants with and without diabetes 

mellitus, ml (95% CI)

Difference adjusted for Hippocampus* P Amygdala* P

Age and sex -0.28 (-0.55 to -0.01) 0.042 -0.33 (-0.55 to -0.11) 0.004

Age, sex, and carotid 

atherosclerosis
-0.27 (-0.55 to 0.00) 0.053 -0.32 (-0.54 to -0.10) 0.005

Age, sex, white matter le-

sions and infarcts on MRI
-0.27 (-0.54 to 0.00) 0.053 -0.33 (-0.56 to -0.11) 0.003

Values are adjusted differences (95% CI and P-value) in MRI volumes (ml) between participants without 

diabetes mellitus (n=465) and participants with diabetes mellitus (n=41)

*Volumes are normalised to average head size

In non-diabetic participants (n=465), post-load insulin concentrations and insulin resistance 

were present for 405 participants. Persons with higher post-load insulin concentrations or 

insulin resistance had smaller amygdalar volumes, but not smaller hippocampal volumes on 

MRI (Table 3). Additional adjusting for BMI, pack-years of cigarette smoking, blood pressure, 

cholesterol, carotid atherosclerosis, white matter lesions and infarcts did not change the as-

sociations, nor did excluding participants with infarcts. The association between insulin re-

sistance and amygdalar volumes on MRI was similar in APOE strata, although statistically 

significant only in non-carriers of the ε4 allele [non-carriers: adjusted difference in amygdalar 

volume per standard deviation increase in insulin resistance –0.11 (95% CI –0.19 to –0.04); 

carriers:  –0.02 (95% CI –0.18 to 0.15)]. 
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Table 3. Insulin resistance in participants without diabetes (n=405) in relation to hippocampal and 

amygdalar volumes on MRI

Volume difference per SD increase in insulin concentrations and insulin 

resistance, ml (95% CI)

 Hippocampus* P Amygdala* P

Post-load insulin (per SD)

Adjusted for

Age and sex -0.02 (-0.11 to 0.06) 0.57 -0.08 (-0.14 to -0.01) 0.020

Age, sex and carotid athero-

sclerosis
-0.03 (-0.11 to 0.05) 0.51 -0.08 (-0.14 to -0.01) 0.018

Age, sex, white matter le-

sions and infarcts on MRI
-0.02 (-0.11 to 0.06) 0.56 -0.08 (-0.15 to -0.02) 0.013

Insulin resistance (per SD)

Adjusted for

Age and sex -0.00 (-0.09 to 0.08) 0.93 -0.08 (-0.15 to -0.02) 0.012

Age, sex and carotid athero-

sclerosis
-0.01 (-0.10 to 0.07) 0.75 -0.09 (-0.15 to -0.02) 0.008

Age, sex, white matter le-

sions and infarcts on MRI
-0.00 (-0.08 to 0.08) 0.95 -0.09 (-0.15 to -0.02) 0.008

Values are adjusted differences (95% CI and P-value) in MRI volumes (ml) per standard deviation (SD) 

increase in post-load insulin concentration and insulin resistance

*Volumes are normalised to average head size

Discussion

We observed that people with type 2 diabetes had more hippocampal and amygdalar atrophy 

on MRI than people without diabetes. Moreover, in persons without diabetes mellitus, insulin 

resistance was associated to amygdalar atrophy on MRI. The presence of atherosclerosis or 

cerebrovascular disease did not explain the associations.

The strengths of our study are its population-based design and the large sample with volu-

metric MRI. The prevalence of diabetes mellitus in our study was comparable to another 

Dutch population study,27 leading to a moderate number of people with diabetes mellitus 

studied in the sample. However, the associations were robust and statistically significant sug-
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gesting that we had sufficient power. A limitation of our study was the indirect assessment 

of insulin resistance through calculating the ratio of post-load insulin concentrations with 

glucose concentrations. This ratio however in non-diabetic subjects correlates well with the 

degree of insulin resistance assessed with precise clamping techniques.28

Several studies have found an increased risk of Alzheimer’s disease in people with diabetes 

mellitus.3, 4, 17, 29-31 Other studies did not find this association or merely an association between 

diabetes mellitus and vascular dementia.32-35 Difficulties in diagnosing Alzheimer’s disease 

in life and distinguishing it from vascular dementia could have resulted in different findings 

across studies. Alzheimer’s disease is generally characterised by slow progression in clinical 

symptoms which is thought to reflect gradual development of the specific Alzheimer pa-

thology over time.8 The pathological hallmarks of Alzheimer’ s disease, neurofibrillary tan-

gles and amyloid plaques, occur in the most early stage of the disease in the hippocampus 

and amygdala8 causing neuronal loss and atrophy that can be visualised on MRI.36 At this 

stage, dysfunction of the hippocampus could cause memory impairment, a well known early 

neuropsychological sign of Alzheimer’s disease.37 In our study, we used hippocampal and 

amygdalar atrophy on MRI in elderly subjects who were clinically free of dementia as mark-

ers of pre-clinical Alzheimer’s disease. Several studies including our own20 show that peo-

ple with hippocampal atrophy on MRI have lower verbal memory performance.38 Moreover, 

besides memory impairment, people with hippocampal atrophy on MRI frequently develop 

other symptoms of Alzheimer’s disease later in life.11, 12 To our knowledge, no study has pro-

spectively examined the specific role of amygdalar atrophy in Alzheimer’s disease. However, 

patients with very mild Alzheimer’s disease have equal volume losses in the hippocampus 

and amygdala on MRI compared to control subjects.13, 14 suggesting that atrophy of both hip-

pocampal and amygdalar are early MRI markers of incipient Alzheimer’s disease.

Three biological explanations support an association between diabetes mellitus and hip-

pocampal and amygdalar atrophy on MRI. First, diabetes mellitus leads to vasculopathy and 

changes in lipid metabolism, which in turn could be associated to hippocampal and amygdalar 

atrophy. Although we found a clear association between diabetes mellitus and carotid athero-

sclerosis, the relation between diabetes and cerebrovascular disease, as noted by the degree 

of white matter lesions and brain infarcts on MRI, was not very strong. Moreover, when we 

accounted for vascular disease the relation between diabetes mellitus and atrophy on MRI re-

mained the same. This is in line with a recent study in people free of cerebrovascular disease 

that showed impaired glucose tolerance to relate to hippocampal atrophy on MRI.39 Thus, al-

though diabetes mellitus is a vascular risk factor, other non- vascular pathways seem to play a 

role in the findings. A second biological explanation is that hyperglycaemia in diabetic patients 

is directly associated to hippocampal and amygdalar atrophy. A prospective study found that 

subjects with diabetes mellitus have increased amyloid plaques and neurofibrillary tangles 
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in the hippocampus at autopsy,4 though another post-mortem study did not.40 In diabetic 

subjects, accelerated formation of advanced glycation endproducts can cross-link amyloid 

proteins leading to aggregation into the amyloid plaques.6, 41 In addition, glycation of the mi-

crotubule associated protein-tau could lead to formation of neurofibrillary tangles.42 Pointing 

to a third biological explanation was the finding that peripheral insulin resistance was associ-

ated to amygdalar atrophy on MRI. Insulin resistance is characterised by high plasma insulin 

concentrations and relatively normal glucose concentrations. Patients with Alzheimer’s dis-

ease have higher plasma insulin concentrations compared with control subjects43, 44 but lower 

cerebrospinal-fluid insulin concentrations.44 This suggests that insulin transport from plasma 

to the brain is diminished in Alzheimer patients.44 Other investigations report that dysfunction 

of insulin signal transduction is involved in Alzheimer’s disease.7, 45 Genetic variability in genes 

encoding for components of the insulin-signalling pathway is associated to Alzheimer’s dis-

ease.46 Insulin regulates metabolism of amyloid proteins, prevents tau phosphorylation7 and 

promotes neuronal survival,47 all actions that in case of dysfunction of the insulin pathway can 

lead to Alzheimer’s disease. Furthermore, the insulin-degrading enzyme is, in addition to its 

role in degrading insulin, important in cleaving amyloid protein in the brain.48 Mice with hypo-

function of this enzyme have increased accumulation of amyloid in the brain and increased 

plasma insulin concentrations,  further supporting a connection between insulin and Alzhei-

mer’s disease.49 It is postulated that patients with Alzheimer’s disease try to compensate for 

impaired insulin signalling by increasing the amount of insulin receptors.50 Interestingly, we 

found a restricted relation between insulin resistance and amygdalar atrophy on MRI. Higher 

plasma insulin concentrations or insulin resistance were not related to hippocampal atrophy 

on MRI, in agreement with others.39 The hippocampus and amygdalar differ according to the 

amount of insulin receptors, the hippocampus having a higher density.51 A speculative expla-

nation for the absence of a relation between insulin concentrations and hippocampal volumes 

is that the high density of insulin receptors in combination with high plasma insulin concentra-

tions compensates for dysfunctions in the insulin-signalling pathway. However, the differential 

effects of insulin on the hippocampus and amygdala have yet to be confirmed.

In summary, in this community sample we found that people with type 2 diabetes have 

smaller hippocampal and amygdalar volumes on MRI, supporting the view that diabetes is a 

risk factor for Alzheimer’s disease. Since atherosclerosis or cerebrovascular disease were not 

explaining the associations, it is likely that direct metabolic effects of diabetes mellitus are 

involved. Our finding that insulin resistance was associated to amygdalar atrophy on MRI is 

in line with suggestions that dysfunction of insulin signalling is involved in the pathogenesis 

of Alzheimer’s disease. 
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Chapter 4.1

Hippocampal atrophy and memory performance

The hippocampus plays a crucial role in the consolidation of memory. Anatomically, the hip-

pocampal head, body, and tail are connected to separate regions of the entorhinal cortex, 

which conveys processed information from the association cortices to the hippocampus. Lit-

tle is known, however, about the functional segregation along its longitudinal axis. In the 

present study, we investigated whether the hippocampal head, body, or tail is selectively 

involved in verbal memory performance. A total of 511 nondemented participants, aged 60-

90 years, underwent a three-dimensional HASTE brain scan in a 1.5-T MRI unit. Hippocampal 

volumes were measured by manual tracing on coronal slices. Segmentation was performed 

in anterior-posterior direction on the basis of predefined cut-offs allocating 35, 45, and 20% 

of slices to the head, body, and tail, respectively.  Memory performance was assessed by a 

15-word learning test including tasks of immediate and delayed recall. To analyze the associa-

tion between head, body, and tail volumes and memory performance, we used multiple linear 

regression, adjusting for age, sex, education, and midsagittal area as a proxy for intracranial 

volume. Participants with larger hippocampal heads scored significantly higher in the memory 

test, most notably in delayed recall [0.41 words per SD increase in left hippocampal head 

(95% CI 0.16, 0.67), 0.33 words per SD increase in right hippocampal head (95% CI 0.06, 

0.59)]. Our data suggest selective involvement of the hippocampal head in verbal memory, 

and add to recent findings of functional segregation along the longitudinal axis of the hip-

pocampus.
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Introduction

The hippocampus is generally assumed to play a key role in the consolidation of memory, 

i.e. the integration of relevant new information and its transfer from short-term to long-term 

memory.1 A host of magnetic resonance imaging (MRI) studies have found positive asso-

ciations between total hippocampal volume and memory performance.2-5 Anatomically, the 

hippocampus can be divided into three distinct segments: (a) an anterior part, or head, (b) 

an intermediate part, or body, and (c) a posterior part, or tail.6 These subdivisions are recipro-

cally connected to separate regions of the entorhinal cortex.7 In addition, a number of studies 

suggest that the hippocampal head, body, and tail may have different functions. Presentation 

of novel information, for instance, was associated with activity in the left anterior hippocam-

pus during functional MRI (fMRI),8 while a positron emission tomography (PET) study found 

memory impairment in amnesiacs and in Alzheimer patients to be associated with decreased 

glucose metabolism in the hippocampal head.9 A recent small volumetric MRI study demon-

strated that impaired verbal memory in first-degree relatives of schizophrenic patients was 

associated with lower volumes in the anterior part of the hippocampus.10 The goal of our study 

was to investigate, in a large sample of nondemented elderly participants, whether MRI vol-

umes of hippocampal head, body, and tail are differentially associated with verbal memory 

performance.

Methods

Participants

The Rotterdam Study is a large population-based cohort study in the Netherlands that started 

in 1990 and investigates the prevalence, incidence and determinants of various chronic dis-

eases among elderly participants.11 From 1995 to 1996, we randomly selected 965 living mem-

bers (aged 60-90 years) of this cohort in strata of sex and age (5 years) for participation in the 

Rotterdam Scan Study.12 After exclusion of individuals who were demented, blind, or had MRI 

contraindications, the number of eligible participants was 832. Subjects with dementia were 

excluded based on a stepwise approach as used in the Rotterdam Study.13 Subjects were 

screened using the Mini-Mental State Examination (MMSE)14 and the Geriatric Mental State 

Schedule (GMS). Those scoring below 26 on the MMSE or more than 0 on the GMS were 

additionally assessed by means of the CAMDEX interview.15 Subjects suspected of dementia 

based on the CAMDEX were examined by a neurologist. Finally, an expert panel reviewing all 

relevant information decided whether an individual was to be considered demented or not, 

based on the criteria of the DSM-IIIR. Among the 832 eligible, 563 participants gave their 

written informed consent to participate in the present study (response rate: 68%), which 
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included undergoing a MRI brain scan. The study 

was approved by the medical ethics committee 

of the Erasmus Medical Center, Rotterdam, the 

Netherlands.

Magnetic resonance imaging acquisition

Brain scans were performed using a 1.5-Tesla 

MRI System (VISION MR, Siemens AG, Erlan-

gen, Germany). The protocol included, in the 

following order, a) a sequence of proton-density 

images b) a sequence of T2-weighted images c) 

a sequence of T1-weighted images.16 Finally, for 

volumetric measurements of the hippocampus, 

a custom-made, inversion recovery - double con-

trast 3D half-Fourier acquisition single-shot turbo 

spin echo (HASTE) sequence was included  (inver-

sion time 440 ms, [TR] 2800 ms, 128 contiguous 

sagittal slices of 1.2-mm, matrix 192x256, field 

of view 256x256). Two HASTE modules were 

sequentially acquired after the inversion pulse 

(effective TEs of 29 ms and 440 ms), the first of 

that was used for the volume measurements. 

Fifty-two participants developed claustrophobia 

during MRI acquisition. Thus, complete MRI data 

were available from a total of 511 participants.

 

Hippocampal volume measurement

For each participant, we reconstructed a se-

ries of coronal brain slices (contiguous 1.5 mm 

slices) based on the 3D HASTE sequence, 

aligned to be perpendicular to the long axis of 

the hippocampus. All reconstructed slices were 

transferred to a Siemens Magic View 1000 work-

station for volumetric assessment of the left and 

right hippocampus. 

Figure 1. Hippocampal head (H), body (B) and tail (T)  manually outlined on coronal images 
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Referencing to an anatomical atlas,6 we manually traced the boundaries of both hippocampi 

on each slice by means of a mouse-driven pointer (Figure 1). We proceeded from posterior 

to anterior, starting on the slice where the crux of the fornices was in full profile. Segmenta-

tion of the hippocampal head from the overlying amygdala was facilitated by identifying the 

alveus, which demarcated the undulating superior surface of the hippocampal head. The intra-

plane hippocampal boundaries were defined to include the CA1 through CA4 sectors of the 

hippocampus proper, the dentate gyrus, and the subiculum. The number of slices measured 

ranged from 16 to 31 (left hippocampus, median = 25) and from 18 to 31 (right hippocampus, 

median = 25) per individual. Entering the outlined surface areas (in mm2) into a spreadsheet 

program (Microsoft Excel 97), we multiplied the summed surface areas on each side with 

slice thickness to yield estimates of the left and right hippocampal volume (ml). We also re-

constructed a midsagittal slice (thickness 3.0 mm). The midsagittal area, which we used as 

a proxy for intracranial volume, was measured by tracing the inner table of the skull. The 511 

scans were randomly split between two raters who were blinded to any participant-related 

clinical information. Studies performed on 14 random scans to evaluate intra- and interrater 

correlation showed good overall agreement. Intrarater intraclass correlation coefficients were 

r = 0.93 for the left and r = 0.90 for the right hippocampus, whereas interrater intraclass cor-

relation coefficients were r = 0.87 and r = 0.83, respectively. For the midsagittal area, intra- 

and interrater intraclass correlation coefficients were 0.995 and 0.96, respectively. To obtain 

separate volumes for the hippocampal head, body, and tail, we subdivided the hippocampus 

into three segments, such that the anterior 35% of coronal slices (or any rounded integer of 

slices closest to this cut-off) included the head with the hippocampal digitations, while the 

intermediate 45% represented the body of the hippocampus, and the remaining 20% the tail 

(Figure 2). These cut-offs were based on photographs of histological preparations.6 Grouping 

hippocampi by length (i.e. by number of slices), and plotting graphs of mean cross-sectional 

volumes over the anterior-posterior extent of the hippocampus, we confirmed that the 35% 

cut-off was a stable proxy for the boundary between head and body over the whole range of 

hippocampal lengths, as it invariably fell into, or near, the region of steepest slope  correspond-

ing to the anterior bend of the hippocampus. The cut-off between body and tail coincided well 

with the region where cross-sectional hippocampal volumes reached a minimum.

Measurement of memory function

Memory was assessed by means of a 15-word learning test, which is used to evaluate the 

ability to acquire and retain new verbal learning information based on Rey’s auditive recall of 

words.17 To test immediate recall, participants were presented three times with a sequence 

of 15 words and subsequently asked to recall as many of these words as possible. Free de-

layed recall was tested 15 minutes later. Outcome variables were the mean of the number of 
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words recalled over the first three trials (as a summary score for immediate recall), and the 

number of words remembered after the 15-minute delay (as a score for free delayed recall). 

Immediate and delayed recall scores were normally distributed. The frequency of the highest 

and lowest scores (i.e., 0 and 15) was less than 3%. Therefore, no ceiling or floor effects were 

observed. As a measure of global cognitive function we used the MMSE.14

Figure 2. A. Sketch of right hippocampus as seen from above. Hippocampal head, body, and tail (dashed 

lines represent 35% and 20% cut-offs for the boundaries between head and body, and body and tail, 

respectively) are depicted.

B. Mean coronal volumes plotted over the anterior-posterior extent of the hippocampus (graph is based 

on hippocampi with a longitudinal extent of 25 slices.
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Other measurements

Level of education according to UNESCO was obtained.18 The presence of depressive 

symptoms was determined by the Center of Epidemiologic Studies on Depression (CES-D) 

scale.19

 

Data analysis

To assess the association between hippocampal head, body and tail volumes and memory, 

we first constructed simple x,y scatter plots. As the scatter plots suggested approximately 

linear associations we decided to use multivariable linear regression for our analyses. We 

included all factors that were significantly correlated with hippocampal volumes (age, sex, 

education, midsagittal area) in our model. Thus, our model was represented by the following 

equation: memory performance = B0 + B1 X age + B2 X sex+ B3 X education+ B4 X mid-

sagittal area + B5 X hippocampal head volume (SD) + B6 X hippocampal body volume (SD) + 

B7 X hippocampal tail volume (SD). The regression coefficients of the hippocampal volumes 

(B5-B7) reflect the average difference in number of words recalled between individuals for 

a given volume difference of 1 SD. Appropriate checks revealed no indication of nonlinearity.

To confirm regional patterns of association and to check whether the association between 

the volumes of head, body and tail and performance in the 15-word learning test was inde-

pendent of our chosen cut-off points, we performed additional slice-by-slice analyses. For 

this purpose, we transformed the number of slices to a standard of 20 for all hippocampi by 

means of linear interpolation. Thus, slice volumes were calculated for 5% intervals, given a 

relative length of 100% for all hippocampi. Each of the 20 slices was individually assessed for 

its potential association with memory performance, adjusting for age, sex, level of education, 

midsagittal area, and the volume of the remaining 19 slice locations combined.
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Results

Relevant characteristics of all 511 participants are summarized in Table 1. 

Table 1. Characteristics of the study sample (n=511)

Age, years 73 ± 8

Sex, % women 49

Highest education, % 

               Primary 31

               Intermediate/Higher 60

               College/University 9

Depressive symptoms (CES-D), range 0-31 5.6 ± 6.1

15-Word Learning Test

               Immediate Recall, mean over three trials 6.57 ± 1.81

               Delayed Recall 5.78 ± 2.63

MMSE score 27.7 ± 2.1

Midsagittal area, cm2 149.1 ± 11.1

Total hippocampus, ml

               Left 3.15 ± 0.46

               Right 3.22 ± 0.44

Hippocampal head, ml

               Left 1.46 ± 0.22

               Right 1.52 ± 0.24

Hippocampal body, ml

               Left 1.18 ± 0.23

               Right 1.19 ± 0.21

Hippocampal tail, ml

               Left 0.51 ± 0.12

               Right 0.52 ± 0.11

Values are unadjusted means ± standard deviation or percentages
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Volumes of the left and right hippocampus were highly correlated with each other (r = 0.88; 

P < 0.001). Volumes of hippocampal head, body and tail were positively and moderately cor-

related with each other (correlation between head and body r = 0.45 (left) and r = 0.48 (right), 

between head and tail r = 0.30 (left) and r = 0.21 (right), and between body and tail r = 0.57 

(left) and r = 0.63 (right)). The number of immediate words recalled decreased 0.08 per year 

and of delayed recall words 0.11 per year. 

Table 2 shows the association between hippocampal head, body and tail volumes and vari-

ables that may confound the association with memory performance. Age, sex, education 

and midsagittal area were significantly associated with subdivisional volumes. Slice-by-slice 

analysis revealed that the association between age and hippocampal volume was strongest 

in the region between 20% and 35%, corresponding to the posterior part of the hippocampal 

head.

Table 2. Association between several variables and hippocampal head, body and tail

Head (ml) Body (ml) Tail (ml)

Left Right Left Right Left Right

Age 

 (per 10 years)

-0.07 

(<0.001)

-0.08

(<0.001)

-0.05

(<0.001)

-0.06

(<0.001)

-0.03

(<0.001)

-0.03

(<0.001)

Sex* 
-0.07

(0.002)

-0.07

(0.001)

-0.00

(0.85)

0.00

(0.90)

0.03

(0.007)

0.03

(0.002)

Education (range 0-7) 
0.01

(0.02)

0.02

(0.008)

0.00

(0.44)

0.00

(0.10)

-0.00

(0.37)

0.00

(0.34)

Depressive symptoms 

 (per 10)†

-0.02

(0.14)

-0.03

(0.14)

0.01

(0.50)

0.00

(0.96)

0.00

(0.99)

-0.00

(0.66)

Midsagittal area 

 (per 10 cm2)

0.06

(<0.001)

0.08

(<0.001)

0.04

(<0.001)

0.04

(<0.001)

0.01

(0.15)

0.01

(0.03)

Values given are regression coefficients (P-values in parentheses)

*Regression coefficient adjusted for midsagittal area. Minus sign denotes that volume is smaller in wo-

men. Positive sign denotes that volume is smaller in men

†Score on the CES-D, range 0-31
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Total hippocampus and memory

Table 3 summarizes the results of our multivariable linear regression analysis which demon-

strated a strong positive and highly significant association between total hippocampal vol-

umes and performance in the 15-word learning test, in both immediate recall and delayed 

recall.

Table 3. Association between total hippocampal volume and number of words recalled 

 Immediate recall Delayed recall

Difference per SD (95% CI) P Difference per SD  (95% CI) P

Left hippocampus 0.21 (0.05, 0.36) 0.008 0.41 (0.19, 0.64) <0.001

Right hippocampus 0.22 (0.06, 0.38) 0.006 0.47 (0.23, 0.70) <0.001

Values are adjusted difference in number of words recalled per standard deviation of hippocampal vol-

ume, with 95% confidence intervals (CI), and P-values. Adjusted for age, sex, education, and midsagittal 

area. 

Table 4. Association between volume of hippocampal head (cut-off 35%), body (45%), and tail (20%) and 

number of words recalled 

Immediate recall Delayed recall

Difference per SD (95% CI) P Difference per SD (95% CI) P

Left Hippocampus

Head 0.26 (0.09, 0.44) 0.003 0.41 (0.16, 0.67) 0.002

Body -0.08 (-0.29, 0.14) 0.49 -0.03 (-0.35, 0.28) 0.83

Tail 0.11 (-0.08, 0.31) 0.26 0.19 (-0.09, 0.48) 0.19

Difference per SD (95% CI) P Difference per SD (95% CI) P

Right Hippocampus

Head 0.19 (0.01, 0.37) 0.035 0.33 (0.06, 0.59) 0.015

Body 0.01 (-0.22, 0.20) 0.94 0.06 (-0.25, 0.36) 0.71

Tail 0.12 (-0.07, 0.31) 0.22 0.24 (-0.04, 0.51) 0.10

Values are adjusted estimates of the change in number of words recalled per increase in standard de-

viation of volume, with 95% confidence intervals (CI), and P-values. Adjusted for age, sex, education 

midsagittal area.
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Hippocampal head, body, and tail and memory

Table 4 shows the association between volume of the hippocampal head, body, and tail and 

test performance. Individuals with larger hippocampal heads performed significantly better in 

the 15-word learning test, most notably in delayed recall. Estimates for the left hippocampal 

head tended to be slightly higher than estimates for the right hippocampal head. No significant 

associations were observed for the hippocampal body or hippocampal tail. The hippocampal 

head was the only region associated to the MMSE score [per SD 0.27 (95% CI 0.05-0.48) for 

the left hippocampal head; per SD 0.23 (95% CI 0.02-0.45) for the right hippocampal head]. 

Hippocampal body and tail were not associated to MMSE score. Slice-by-slice analyses of 

delayed recall performance revealed significant associations only for the most anterior part of 

the hippocampus (i.e., the first three slices of the left and right hippocampus), the region cor-

responding to the anterior half of the hippocampal head (Figure 3). No significant associations 

were observed at any other slice location.

Figure 3. Association between left (top) and right (bottom) regional hippocampal volumes and number of 

words recalled in the delayed recall test (x-axis: location percentiles along the longitudinal axis of the hip-

pocampus, y-axis: difference in the number of words recalled per standard deviation of hippocampal slice 

volume; * significant at the P=0.05 level). Adjusted for age, sex, educational level and midsagittal area
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Discussion

We found that a larger volume of the hippocampal head, rather than the hippocampal body 

or tail, was significantly associated with better verbal memory performance, in tasks of both 

immediate and delayed recall.

Our large number of participants and the regional approach are obvious strengths of our 

study. Nevertheless, some methodological issues remain to be addressed. First, no precise 

definitions for the boundaries between hippocampal head, body and tail on MRI exist, and 

hence the cut-offs we chose are somewhat arbitrary. However, our slice-by-slice analysis sug-

gested that the associations did not depend on the choice of cut-offs. Second, the method 

we used to define the hippocampal subdivisions was implicitly based on the assumption that 

all individual hippocampi, irrespective of their shape or length, share the same proportions 

regarding the longitudinal extent of the hippocampal head, body, and tail (i.e., 35%, 45%, and 

20%, respectively). Although this assumption was mostly met, our subdivisions in volume 

were likely to be affected by some degree of random misclassification, leading to a weaken-

ing of the associations we found. 

The observation that larger hippocampal volume is associated with better verbal memory is 

in keeping with numerous MRI studies,2-5 even though surprisingly some studies found an 

inverse association.20, 21 More specifically, our study showed that hippocampal involvement in 

verbal memory performance may be limited to the head region. Few MRI studies investigated 

subdivisions of the hippocampus in relation to function. A study in taxi drivers showed the 

posterior hippocampus to be associated with spatial memory.22 Another study in psychopaths 

showed the posterior hippocampus to be associated with the degree of psychopathology.23 

A volumetric MRI study assessed the role of longitudinal subdivisions of the hippocampus 

in verbal memory in first-degree relatives of schizophrenic patients.10 This study found that 

amygdalar and anterior hippocampal volumes were significantly associated with delayed ver-

bal recall, whereas no such association was shown for the posterior hippocampus. Most 

PET studies discussed in a review of medial temporal lobe (MTL) activation in fMRI and PET 

studies of episodic encoding and retrieval reported anterior medial temporal lobe activation, 

while the fMRI studies reviewed found activation mainly in the posterior part of the MTL.24 

A recent fMRI study observed activation of the left anterior hippocampus in participants pre-

sented with novel verbal stimuli, suggesting that the anterior hippocampus plays a crucial role 

in novelty encoding.8 No activation was observed in the posterior hippocampal region. A PET 

study measuring glucose metabolism in amnesic patients and in patients with Alzheimer’s 

disease revealed that both groups had a significantly decreased glucose metabolism in the 

hippocampal head in comparison to controls.9 Again, no association was observed for the 

hippocampal tail or body. 
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Memory is acquired through the processing of incoming information by the association cor-

tices which, by way of the parahippocampal and perirhinal cortex, send their output to the 

entorhinal cortex. Cells in the entorhinal cortex supply most of the fibers that enter the hip-

pocampal formation through the perforant pathway, while most efferent connections from 

the hippocampus project back to the entorhinal cortex.25 A recent study has shown that the 

perforant pathway is characterized by a topographical organization along the longitudinal axis 

of the hippocampal formation, such that a medial-to-lateral gradient in the entorhinal cortex 

corresponds to an anterior-posterior gradient in the hippocampal formation.7 This special archi-

tecture may be the underlying substrate for the functional segregation between hippocampal 

head, body, and tail that we and others have found. 

The effect of hippocampal volume on number of words recalled may seem small and not clini-

cally relevant. However, it is important to realize that these are not differences on an individual 

level, but average differences across groups of nondemented persons and adjusted for pos-

sible confounders. The effect size per SD increase in hippocampal volume in words recalled 

approximately equaled the effect of a 4-year age increase. 

One explanation that would fit our data is that people with better memory have larger hip-

pocampal heads. However, we also found a relation between hippocampal head volume and 

the MMSE score, which is a more global cognitive measure. This suggests that individuals 

who do not fulfill criteria of dementia but do have slight impairment of verbal memory or 

global cognitive function may have selective atrophy of the hippocampal head. Whether they 

are destined to develop clinically evident dementia is yet unclear. MRI in early Alzheimer’s 

disease showed patients’ hippocampi to be smaller than those of controls, while hippocampal 

head size in Alzheimer patients seems to be inversely related to disease severity.26 Prospec-

tive studies suggested that smaller total hippocampal volume may predict dementia.5, 27, 28 

Possibly, subdividing the hippocampus into head, body or tail or even smaller subdivisions 

may show atrophy in regions specific for imminent Alzheimer’s disease. Prospective follow-up 

investigations of the individuals participating in our study will enable us to confirm whether 

there is early - and possibly selective - involvement of the hippocampal head region in Alz-

heimer’s disease. If this is the case, hippocampal head volume – in combination with other 

variables – may help to refine prediction of dementia and enhance the identification of at-risk 

individuals who might benefit from early intervention. 
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Chapter 4.2

Hippocampal, amygdalar atrophy and inicident dementia

Background: Patients with Alzheimer’s disease have pronounced atrophy of the hippocam-

pus and amygdala on magnetic resonance imaging (MRI). In persons with mild cognitive im-

pairment, hippocampal atrophy predicts conversion to dementia. Whether atrophy is evident 

even before symptom onset is unclear. We studied the longitudinal relation between atrophy 

on MRI and incident dementia in a population-based cohort accounting for neuropsychological 

performance. 

Methods: We obtained volumetric MRI assessments of the hippocampus and amygdala at 

baseline in a cohort of 511 elderly free of dementia (age 60-90 years). Each participant was 

asked about memory problems in daily life and cognitive performance was assessed. The 

cohort was followed for possible development of dementia by in-person screening and moni-

toring of medical records.

Results: During a total of 3043 person-year of follow-up (mean per person 6.0 years), we 

detected 35 incident dementia cases (26 with Alzheimer’s disease). Those who developed 

Alzheimer’s disease had on average 10% smaller volumes of the hippocampus and amygdala 

on MRI. The risk to develop dementia was higher in persons with hippocampal or amygdalar 

atrophy (age, sex and education adjusted relative risk per standard deviation decrease 2.99 

(95% CI 1.96-4.57) for the hippocampus and 2.06 (95% CI 1.46-2.90) for the amygdala. In per-

sons without memory complaints or cognitive impairment at baseline, the relation between 

atrophy on MRI and incident dementia was similar as that in the total population.

Conclusions: Atrophy of the hippocampus and amygdala on MRI predict dementia over a 6-

year follow-up even in cognitively intact elderly.
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Introduction

Alzheimer’s disease is the most common cause of dementia in late life.1 Strategies to prevent 

or delay the disease are under development.2 Once available, it will be important to identify 

people at high risk to develop dementia who may benefit from such therapies. Magnetic 

resonance imaging (MRI) of the brain provides one potential tool for detecting the preclinical 

stages of the disease. Pathologically, Alzheimer’s disease is characterized by dense accumu-

lation of neurofibrillary tangles and amyloid plaques in the medial temporal lobe,3 leading to 

neuronal loss that is visible as atrophy on MRI.4 Several studies have shown in patients with 

Alzheimer’s disease5-7 pronounced reductions in hippocampal and amygdalar volumes on MRI 

compared to healthy elderly. Patients with mild cognitive impairment (MCI), at high risk of de-

veloping Alzheimer’s disease,8 have also smaller hippocampal volumes than healthy elderly.9-15 

It is unclear whether in persons destined to develop dementia, atrophy on MRI is observed 

even before persons would be designated as having MCI. We focused on this question by 

studying the longitudinal relation between volumes of the hippocampus and amygdala on 

MRI and incident dementia in a population dwelling in the community. By taking into account 

memory complaints and neuropsychological performance at baseline we sought to investi-

gate whether atrophy on MRI predicts dementia even in people without cognitive problems. 

We used data from the population-based Rotterdam Scan Study in whom 511 non-demented 

elderly had volumetric MRI assessments of the hippocampus and amygdala and whom we 

followed for an average period of 6 years.  

Methods

Subjects

The Rotterdam Study is a large population-based cohort study in the Netherlands that started 

in 1990 and investigates the prevalence, incidence and determinants of chronic diseases 

among elderly participants.16 From 1995 to 1996, we randomly selected 965 living members 

(aged 60 to 90 years) of this cohort in strata of sex and age (5 years) for participation in the 

Rotterdam Scan Study, a study on age-related brain changes on MRI.17 As part of the eligibility 

criteria we excluded individuals who were demented,18 blind, or had MRI contraindications. 

This left 832 persons eligible for participation. Among these, 563 persons gave their written 

informed consent to participate in the present study (response rate: 68%). Complete MRI 

data, including a three-dimensional (3D) MRI sequence, was obtained in 511 persons.19 The 

study was approved by the medical ethics committee of the Erasmus Medical Center, Rot-

terdam, the Netherlands.
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MRI assessments

At baseline examinations in 1995 to 1996, a three-dimensional (3D) MRI sequence covering 

the whole brain was made using a 1.5 Tesla MRI unit.19 We reformatted coronal slices (1.5-mm 

contiguous slices) from this 3D MRI sequence in such a way that they were perpendicular 

to the long axis of the hippocampus. The left and the right hippocampus and amygdala were 

manually outlined on each slice with a mouse-driven cursor.19 Absolute volumes (ml) were cal-

culated by multiplying the areas on each slice by the slice thickness. We summed the left and 

right side to yield total volumes because the analyses did not suggest laterality of effects. As 

a proxy for head size, we measured on a reformatted middle sagittal MRI slice the intracranial 

cross-sectional area.19 We corrected for head size differences across individuals by dividing 

the uncorrected volumes by the subject’s calculated head size and subsequently multiplying 

this ratio by the average head size area (men and women separately).7, 20 

Ascertainment of incident dementia

All participants were free of dementia at baseline and we followed the cohort for incident de-

mentia.18 Briefly, participants were screened at follow-up visits (1997-1999, 1999-2000, 2002-

2003) with the Mini Mental State Examination (MMSE) and the Geriatric Mental Schedule 

and when screen positive assessed with the Cambridge Examination for Mental Disorders 

of the Elderly interview.21 Participants suspected of dementia were examined by a neurolo-

gist and underwent extensive neuropsychological testing. The MRI at baseline was not used 

in the diagnosis of dementia. In addition to these examinations in-person, we continuously 

monitored the medical records of all participants at the general practitioners’ offices and the 

Regional Institute for Ambulatory Mental Health Care to obtain information on diagnosed 

dementia until January 1, 2003. A diagnosis of dementia and AD was made by a panel of a 

neurologist, neuropsychologist and research physician that used standard criteria.22, 23 The on-

set of dementia was defined as the date on which clinical symptoms allowed the diagnosis of 

dementia. Duration of follow-up for each participant was calculated from baseline examination 

until death, diagnosis of dementia or the end of follow-up whichever came first.

Other measurements

As memory impairment is the first detectable neuropsychological sign of incipient Alzhei-

mer’s disease,24 we questioned persons on memory complaints (by a single question), and 

assessed memory performance (by a 15-word verbal learning task).25 For each participant, we 

calculated z scores based on the results of the memory test (z score =individual test score 

minus mean test score divided by the standard deviation). We constructed a compound score 

for memory performance by averaging the z scores of the total of the three immediate recall 

trials and the delayed recall trial of the 15-word verbal learning task.25 In accordance with cur-



Chapter 4.2

134

rent criteria, we defined MCI as having a memory score <1.5 standard deviation (SD) of age 

and education specific means and memory complaints.26 To further reduce the possibility that 

the associations were only present in persons with low memory performance at baseline we 

also defined a group with a score of <1 SD below age and education specific means. Additio-

nally we administered tests that assess psychomotor speed25 and used a cut-off of <1 SD be-

low age- and education adjusted means to indicate low performance of psychomotor tasks. 

We measured other characteristics on brain MRI that have previously been associated to 

dementia.18 White matter lesions were considered present if visible as hyperintense on pro-

ton-density and T2 weighted axial images, without prominent hypointensity on T1 weighted 

scans. Periventricular white matter lesions were scored semi-quantitatively from 0-9.25 We 

defined infarcts as focal hyperintensities on T2 weighted images. Infarcts in the white matter 

also had to have corresponding hypointensities on T1 weighted images in order to distinguish 

them from white matter lesions. Subcortical brain atrophy was calculated by averaging the 

ventricle-to-brain ratio on T1 weighted images at the frontal horns, the occipital horns and the 

caudate nucleus.

Data analysis

With Cox proportional hazards models we calculated the adjusted relative risk of dementia 

per SD decrease in volumes on MRI. We made also age- and sex specific tertiles of volumes, 

which we denote as severe, moderate and no atrophy. Adjusted volume differences at base-

line between those developing Alzheimer’s disease and those remaining free of dementia 

were computed from these Cox models. We plotted this difference against the time after 

MRI that the diagnosis of Alzheimer’s disease was made in three equally sized groups of time 

after MRI. In the basic model we adjusted for age, sex and level of education. Additional ad-

justments included periventricular white matter lesions, brain infarcts and subcortical atrophy 

on MRI.18 Analyses were repeated after excluding persons with memory complaints, with a 

MMSE<26, with a low performance on psychomotor tasks (<1 SD below age and education 

adjusted means), with a low performance on memory tasks (<1 or <1.5 SD below age and 

education adjusted means) or MCI at baseline. 
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Results

Table 1 gives the baseline characteristics of the study sample. Sixteen persons fulfilled criteria 

of MCI at baseline (3%), a prevalence in line with other studies.27 

Table 1. Baseline characteristics of the study sample

Characteristic n=511

Age, y 73.4 ± 8.0

Sex, % women 49

Primary education, % 31

MMSE, score 27.7 ± 2.1

Memory complaints, % 31

Speed performance

<1 SD*, % 15

Memory performance

<1 SD*, % 17

<1.5 SD*, % 6

MCI†, % 3

Hippocampal volume, ml 6.38 ± 0.88

Amygdala volume, ml 4.57 ± 0.72

Values are mean (± SD) or percentages

*Defined as scoring less than 1 or 1.5 SD below the age and education 

adjusted means

†Presence of memory complaints and memory performance <1.5 SD 

below the age and education adjusted means in memory tests26

During a total of 3043 person-years of follow-up (mean per person 6.0 years), there were 35 

persons who developed dementia of whom 26 received a clinical diagnosis of Alzheimer’s 

disease. Persons with severe atrophy of the hippocampus or amygdala had the highest risk 

to develop dementia, independent of other brain MRI measures (table 2 and 3). In people 

with no hippocampal atrophy, the incidence rate of dementia was 4.8 per 1000 person-years, 

whereas in people with severe hippocampal atrophy the incidence rate was 21.6 per 1000 

person-years. For the amygdala we found in people with no atrophy an incidence rate of 2.9 
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per 1000 person-years and in people with severe atrophy 19.4 per 1000 person-years.

Table 2. Baseline hippocampal atrophy on MRI and risk of dementia 

 Relative risk (RR)

Adjusted for age, sex and 

education

Adjusted for age, sex, educa-

tion and other MRI measures*

Atrophy severity† Dementia RR 95% CI RR 95% CI

No atrophy (n=169) 5 1.00 Ref 1.00 Ref

Moderate atrophy (n=173) 9 1.81 0.61-5.39 1.87 0.63-5.60

Severe atrophy (n=169) 21 4.53 1.70-12.1 3.89 1.45-10.46

P trend 0.001 0.004

Values are adjusted relative risks (RR) of dementia with 95% confidence interval (CI) compared to no 

atrophy and P-value of trend analysis

*The MRI measures adjusted for were severity of periventricular white matter lesions, brain infarcts, and 

severity of subcortical atrophy

†Based on age- and sex specific tertiles

Table 3. Baseline amygdalar atrophy on MRI and risk of dementia 

 Relative risk (RR)

Adjusted for age, sex and 

education

Adjusted for age, sex, educa-

tion and other MRI measures*

Atrophy severity† Dementia RR 95% CI RR 95% CI

No atrophy (n=170) 3 1.00 Ref 1.00 Ref

Moderate atrophy (n=171) 13 4.42 1.26-15.54 4.17 1.18-14.72

Severe atrophy (n=170) 19 7.33 2.15-24.96 6.01 1.74-20.77

P trend 0.001 0.003

Values are adjusted relative risks (RR) of dementia with 95% confidence interval (CI) compared to no 

atrophy and P-value of trend analysis

*The MRI measures adjusted for were severity of periventricular white matter lesions, brain infarcts, and 

severity of subcortical atrophy

†Based on age- and sex specific tertiles
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In the whole population, we found per SD decrease in hippocampal volume an age, sex and 

education adjusted relative risk of 2.99 (95%CI 1.96-4.57) and in amygdalar volume 2.06 (95% 

CI 1.46-2.90). This effect was similar after exclusion of persons with memory complaints, a 

low MMSE, low performance on psychomotor speed, low memory performance or MCI at 

baseline (Figure 1). 

Figure 1. Relative risk of dementia with smaller hippocampal and amygdalar volumes on MRI (per SD 

decrease with 95% confidence interval). Analyses were done in the whole population and in persons 

without memory complaints, without a MMSE<26, without a low performance on psychomotor tasks (<1 

SD below age and education adjusted means) without a low memory performance (<1 or 1.5 SD below 

age and education adjusted means) and without MCI at baseline. Adjustments were made for age, sex 

and education
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Figure 2 shows that incident Alzheimer cases had significantly smaller hippocampal and 

amygdalar volumes at baseline than persons without incident dementia. Age, sex and educa-

tion adjusted volumes were on average –10.7 % (95% CI –19.3 to –2.1) smaller for the hip-

pocampus and –10.3 % (95% CI –19.9 to –0.8) smaller for the amygdala. Atrophy was also 

evident at baseline in people who received a diagnosis of Alzheimer’s disease more than 5 

years after the MRI but this was less pronounced.

Figure 2. Volume difference at baseline MRI in hippocampus (left panel) and amygdala (right panel) of per-

sons who developed AD (n=26) at different time points after baseline compared to the volume of people 

who were free of dementia and alive. We made tertiles according to time after baseline the diagnosis was 

made and plotted the differences (with standard error) at the median time point in these tertiles. Adjust-

ments were made for age, sex and education. *P<0.05

Discussion

In this large cohort study in elderly people dwelling in the community, we found atrophy of 

the hippocampus and amygdala on MRI to predict dementia and Alzheimer’s disease over a 

6-year follow-up even in persons without memory complaints or low cognitive performance 

at baseline.

Despite our large cohort only few people developed clinical symptoms of dementia, as ex-

pected based on incident rates in the general population.28 Vascular dementia could therefore 

not be analyzed as a separate entity. Clinical studies however suggest that patients with vas-

cular dementia have a degree of hippocampal atrophy that lies between healthy elderly and 
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Alzheimer patients.29 Another issue is that we only assessed the hippocampus and amygdala 

while recently some investigators propose that atrophy of the entorhinal cortex on MRI has 

a greater ability to predict Alzheimer’s disease than the hippocampus.30 However, difficulties 

in outlining the boundaries of the entorhinal cortex due to anatomic ambiguity make this as-

sessment not easily applicable.14 

As the neuropathology of Alzheimer’s disease is found first, and remains most severe, in 

the hippocampal region, attention of imaging studies in Alzheimer’s disease has been drawn 

to the hippocampus. Moreover, the in-vivo use of MRI of the hippocampus in Alzheimer’s 

disease has been histologically correlated to neuronal loss and Alzheimer pathology.4, 31, 32 

After early MRI studies showing atrophy of the hippocampus in patients with dementia of 

moderate severity,5, 6 later studies found atrophy also in patients with milder dementia.9, 15, 20 

Atrophy on MRI is also observed before the diagnosis of dementia is made in high-risk popula-

tions such as MCI patients9-15 or persons at risk of autosomal dominant familial AD.33, 34 Within 

MCI patients, hippocampal atrophy severity predicts conversion to dementia independent of 

neuropsychological performance.26, 30, 35 We found that hippocampal and amygdalar atrophy 

on MRI predict dementia over a long follow-up period even when people have no memory 

complaints or cognitive impairment. This suggests that atrophy of structures in the medial 

temporal lobe is detectable several years before symptom onset. Although pathological stu-

dies suggested that the amygdala is affected slightly later in the Alzheimer process than the 

hippocampus,3 we found amygdalar atrophy to a similar extent as hippocampal atrophy in 

persons who develop dementia. Cross-sectional studies in mild AD patients also showed hip-

pocampal and amygdalar atrophy to an equal degree.12, 20 Concerning the extent of atrophy, 

we found on average 10% smaller volumes in those destined to develop dementia. In persons 

with mild to moderate AD, volume reductions are between 25% and 40%36 suggesting that 

atrophy accelerates in incipient AD.13 In a study in 5 middle-aged persons who developed 

familial AD within 3 years, a 16% volume difference in medial temporal lobe structures with 

healthy controls was observed.34 In our elderly sample, the medial temporal lobe could be 

less affected by Alzheimer pathology as comorbid cerebrovascular disease may have contri-

buted to the cognitive decline pushing people earlier over the threshold of dementia.18, 37-39 

Our results were not changed when we took into account concurrent vascular brain changes 

on MRI suggesting that vascular brain pathology and atrophy on MRI reflect different underly-

ing processes that both independently predict dementia in late life. 

The emergence of potentially disease-modifying therapies for Alzheimer’s disease urges the 

need to identify high-risk persons who may benefit from such therapies. Treatment or preven-

tion might have the largest effect early in the disease process, in a stage where brain damage 

is not extensive and there are no or only few symptoms. A small hippocampus or amygdala 

on MRI in people without memory complaints or cognitive impairment may be indicative of 
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such a high-risk group early in the disease. However, we must bear in mind that the majority 

of people with atrophy do not develop dementia. Future studies are challenged to investigate 

whether other regions on MRI or other modalities can distinguish those with a small brain 

volume who are in the process of developing dementia and those who are not.  
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Chapter 4.3

Brain atrophy and incident depression

Cross-sectional studies have suggested links between late-life depression and hippocampal, 

amygdalar and frontal atrophy on MRI. It is unclear whether atrophy in these structures could 

precede onset of depression. We followed a population-based sample of 459, non-demented, 

non-depressed elderly a baseline, over a three-year period during which 24 developed a de-

pression. At baseline, MRI of the brain was made on which volumes of the hippocampus and 

amygdala and a score of frontal atrophy were assessed.  Frontal atrophy, but not hippocampal 

or amygdalar atrophy, was associated with an increased risk of depression (per point increase 

odds ratio 2.0, (95% CI 1.1-3.8)).
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Introduction

Several cross-sectional clinical studies found hippocampal, possibly amygdalar, and frontal 

lobe atrophy on magnetic resonance imaging (MRI) in patients with depression (reviewed by 

Sheline1). It has been suggested that atrophy in these regions is a consequence of elevated, 

and neurotoxic, glucocorticoid levels accompanying the depression. However, atrophy could 

also be a cause of depression, as these structures have a role in mood regulation.1 To inves-

tigate the latter hypothesis, we prospectively examined hippocampal, amygdalar and frontal 

brain atrophy on MRI in relation to risk of depression in the elderly. 

Methods

Subjects

This study is based on the Rotterdam Scan Study, a population-based cohort study designed 

to investigate brain abnormalities on MRI.2 The study protocol was approved by the Medical 

Ethics Committee of Erasmus Medical Center and participants gave written informed con-

sent. The cohort consists of 1,077 non-demented elderly persons age 60 to 90 years (mean 

age 73, 49% women) who were examined at baseline in 1995-1996 and underwent brain MRI 

in a 1.5 T scanner (VISION MR). During sample selection, we carefully excluded demented pa-

tients using a stepwise protocol.3 Axial T1 MRI sequences were made in all 1,077 participants. 

In 511 persons, we additionally obtained a three-dimensional (3D) MR sequence covering the 

whole brain. These 511 persons did not differ in several demographics from the original cohort 

of 1,077 persons.2 

Incident depression

At baseline MRI, we excluded 43 participants with depressive symptoms based on the use 

of antidepressant medications or based on a score ≥16 on the Centre for Epidemiologic Stu-

dies Depression scale (CES-D), a cut-off widely used and highly sensitive for depression.4 

This left 468 participants at risk of incident depression. Incident depression was detected 

in two ways. First, we invited all living members of the cohort for follow-up examinations 

in 1999-2000. From the total 432 living members, 334 (77%) agreed to participate and they 

were screened with the CES-D. Persons who refused (n=98) were on average 3.9 years older 

(T-test, P<0.001) but were similar with respect to sex distribution, CES-D score at baseline, 

and MRI assessments compared to participants. Persons with a CES-D score ≥16 at follow-up 

examinations were visited at home by a psychiatrist. The psychiatrist evaluated these partici-

pants with the Present State Examination, a semi-structured psychiatric interview,5 and made 

a diagnosis of major depression, minor depression, or dysthymia according to DSM-IV criteria. 
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As depression can occur between baseline and follow-up examinations and in persons who 

refused follow-up examinations, a second way to detect incident depression was through 

checking of medical records by two raters of all 468 participants at the general practitioners’ 

offices for reports on treated depression until March 1st 2000. Five persons with no informa-

tion from medical records and four persons with anxiety or other psychiatric disorders were 

excluded, leaving 459 participants for the analyses.

MRI acquisition and measurements

The MRI acquisition parameters are reported elsewhere.2 Coronal MRI slices (contiguous 

1.5-mm slices) were reformatted from the 3D MR sequence. The procedure of segmenting 

the hippocampus and amygdala has been described.2 Briefly, we manually outlined on coronal 

slices the hippocampi and amygdalae on both sides with a mouse-driven cursor. Volumes were 

calculated by summing the areas multiplied by slice thickness. As a proxy for head size, we 

measured on the middle sagittal slice the intracranial area by tracing the inner skull. Volumes 

were divided by the intracranial area and the resulting ratio was standardized towards average 

head size (men and women separately). As one volumetric assessment was time-consu-

ming (1-hour), the 459 scans were equally divided between two raters. Intra- and interrater 

studies based on 14 subjects done by both raters showed intraclass correlation coefficients 

to exceed r=0.77. We rated frontal cortical atrophy semi-quantitatively on axial T1 MRI slices. 

Two raters scored independently all the scans and gave a score of 0 (no atrophy) to 3 (severe 

atrophy) based on the average widening of the sulci of the frontal lobe and in comparison to 

reference scans. The central sulcus was the delimiter between the frontal and parietal lobe. 

In case of disagreement of more than 1 point between the raters a consensus reading was 

held, otherwise the mean score was calculated. Weighted kappa values of intra- and interrater 

agreement were 0.57 and 0.71 based on 200 scans. Other regions were similarly assessed 

for severity of atrophy (insular region, parietal lobe, occipital lobe and temporal lobe). 

Data analysis

First, we used multiple linear regression modeling to compare hippocampal and amygdalar 

volumes and frontal atrophy score between persons with and without incident depression. 

Because the associations were similar for left or right-sided hippocampal or amygdalar vol-

umes, we summed the left and right side to yield total volumes. Second, we calculated odds 

ratios (95% confidence interval CI) of incident depression by baseline MRI variables with 

logistic regression using the non-depressed as reference group. Adjustments were made for 

age and sex and additionally for baseline CES-D. Additionally, we excluded persons with a his-

tory of a depression before baseline (based on medical records), and persons who developed 

dementia in follow-up.3
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Results

Hippocampal and amygdalar volumes on baseline MRI were similar in participants who deve-

loped a depression during follow-up (n=24 of whom 8 diagnosed by medical records) compared 

to those who did not (n=435) (Table 1). The corresponding odds ratios of incident depression 

were 0.9 (95% CI 0.6-1.4,P=0.6) per standard deviation (SD) decrease in hippocampal volume 

and 1.3 (95% CI 0.8-2.0,P=0.2) per SD decrease in amygdalar volume. In contrast, there 

was significantly more frontal atrophy in persons who developed depression during follow-up 

compared to persons who did not (Table 1); corresponding odds ratio per point increase 2.0 

(95% CI 1.1-3.8,P=0.031). Adjusting for baseline CES-D did not change these results. Other 

regions for which we assessed cortical atrophy were not associated with depression. Persons 

with a history of depression at baseline (n=14) had not more frontal atrophy (adjusted differ-

ence compared to people with no history 0.10, 95% CI –0.23;0.42,P=0.57). Excluding them, 

of whom 4 developed a depression during follow-up, or persons with incident dementia (n=15 

of whom 2 developed a depression) did not substantially change the association with frontal 

atrophy (odds ratio for frontal atrophy 2.2 (95% CI 1.1-4.4,P=0.030) and 1.8 (95% CI 0.9-3.5, 

P=0.088), respectively).
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Discussion

In this community-sample in the elderly, we observed no relation between hippocampal or 

amygdalar volumes on MRI and the risk of depression. Conversely, frontal brain atrophy was 

associated with an increased risk of depression.

A limitation of our study was the small number of incident depression cases, which explains 

the wide confidence intervals around the estimates. Furthermore, we recognize that currently 

more sophisticated, volumetric, assessments of the frontal lobe and specific regions in the 

frontal lobe are available6, 7 than at baseline in 1995. However, the fact that we found an asso-

ciation between our crude frontal atrophy assessment and incident depression suggests that 

we had enough power to detect associations between MRI variables and incident depression, 

strengthening the negative finding for the hippocampus and amygdala.

A reduced hippocampal or amygdalar volume on MRI in patients with late life depression has 

been observed though results are mixed.1 Two explanations for this association have been 

proposed. First, a smaller hippocampal volume may be a consequence of depression due to 

associated hypercortisolemia. Elevated cortisol levels are neurotoxic to the hippocampus,8 

but possibly this effect plays a role especially in early onset depression. A second explana-

tion may be that volume reduction in the hippocampus and amygdala precedes onset of 

depression, given that these structures are involved in mood regulation.1 In this report, we 

showed that neither hippocampal nor amygdalar atrophy on MRI increased the risk to develop 

depression. This observation strongly challenges the idea that atrophy of the hippocampus 

or amygdala precedes depression in later life. Consistent with this idea is a recent study that 

showed no hippocampal atrophy on MRI in persons with a first episode of depression, sug-

gesting that reductions in hippocampal volume do not precede illness onset.9 Furthermore, 

persons with a longer disease duration have smaller hippocampal volume suggesting that vol-

umes decrease after disease onset.9, 10 Longitudinal clinical studies should focus on whether 

hippocampal and amygdalar volume decrease in patients with depression, possibly due to 

lasting hypercortisolemia. 

Most clinical studies in patients with late life major or minor depression found reductions in 

the frontal lobes on MRI.1 Functional imaging studies have also implicated hypometabolism of 

the frontal lobes in depression.11 The prefrontal cortex has high concentrations of glucocorti-

coid receptors potentially rendering it vulnerable to hypercortisolemic damage.1 This suggests 

that damage to the frontal lobe is a result of depression. However, we observed that frontal 

atrophy on MRI is detectable before disease onset, and non-depressed persons with a history 

of depression had no increased frontal atrophy. This suggests that frontal atrophy indicates an 

increased vulnerability to develop depression in late life.
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This thesis presents studies on causes and correlates of brain atrophy on MRI in non-de-

mented elderly. Studying causes of atrophy on MRI has potential advantages for unraveling 

the etiology of Alzheimer’s disease compared to traditional studies associating risk factors 

to clinical Alzheimer’s disease. First, as we focus on the preclinical period, we study factors 

that could initiate brain changes involved in the early pathogenesis of Alzheimer’s disease. 

Second, the degree of brain atrophy on MRI is a continuous outcome in contrast to clinical 

Alzheimer’s disease, and we have increased power to detect associations. Third, our study 

examined cognitively intact people and may therefore suffer less from selective attrition com-

pared to studies based on patients with Alzheimer’s disease. 

Before we started to investigate potential causes of brain atrophy on MRI there was some indi-

cation that atrophy on MRI, in particular of the hippocampus and amygdala, could be observed 

in the preclinical period of Alzheimer’s disease. However, we wanted to validate and quantify 

in our study sample the association between atrophy on MRI and future clinical symptoms of 

Alzheimer’s disease. We further examined whether atrophy also predicted depression. In this 

chapter, I will first discuss a few methodological considerations. Then, I will discuss the main 

findings, the implications of our findings, and suggestions for future research.

Methodological considerations

The specific limitations of each study have been discussed in the previous chapters. In this 

part I will discuss two general issues, which pertain to all studies performed.

Study design

The studies described in this thesis were done as part of the Rotterdam Scan Study.1 This is 

a population-based prospective study among 1,077 non-demented elderly between 60-90 

years of age that started in 1995-1996. In all 1,077 persons, we had assessments of global 

brain atrophy on MRI. In 511 persons, we additionally had volumetric assessments of the hip-

pocampus and amygdala. A specific feature of this design is that we invited people randomly 

from the general population. This is in contrast to clinical studies which use a selection of 

people who have memory problems and have taken the step to visit a physician. In etiological 

research we are interested in what triggers the first pathological signs, as the pathology starts 

before symptom onset. For this purpose, population studies are more suitable than clinical 

studies. Inherent to our approach is the fact that only a few people develop dementia, as 

expected in a low risk population. To investigate whether atrophy on MRI predicts dementia, 

we therefore needed a long follow-up duration and a large cohort in order to detect enough 

incident cases of dementia.

In 1995-1996, we assessed potential risk factors in persons at the same time that we made 



Chapter 5

154

the brain MRI on which we assessed atrophy. This cross-sectional design is a limitation that 

needs further discussion. In cross-sectional analyses, one cannot invariably draw the conclu-

sion that the risk factor under study really is a cause of brain atrophy. Because we have no 

information on whether the risk factor preceded brain atrophy or vice versa, brain atrophy may 

have also resulted in physiological changes. When genetic determinants are concerned, this 

is not an issue as atrophy will not induce point mutations in DNA. However, in the analyses 

on alcohol intake and plasma homocysteine levels, which depend on folate and vitamin B12 

intake, persons with brain atrophy and self-noticed cognitive decline could have changed food 

intake behavior. This in turn may induce associations between alcohol intake or homocysteine 

levels and brain atrophy. Although we tried to account for several confounding parameters, 

residual confounding is still possible. To resolve or limit the possibility that atrophy induced 

the change in a physiological marker, follow-up studies are needed where the baseline risk 

factor is associated with change in atrophy over time. These analyses are on the other hand 

limited by the fact that atrophy has developed over years due to lifetime cumulative exposure 

of determinants whereas the relation between determinant and change in atrophy over time 

may be less outspoken.

Brain atrophy as preclinical marker of Alzheimer’s disease

Our studies were based on the major assumption that atrophy on MRI is a preclinical bio-

marker of Alzheimer’s disease. To what extent does this assumption hold? Several studies 

have shown that patients with Alzheimer’s disease have severe hippocampal, amygdalar and 

global brain atrophy on MRI compared to healthy elderly.2 Preclinically, there are studies in 

at-risk patients such as those with genetic mutations3 or with mild cognitive impairment4 that 

show brain atrophy on MRI before a diagnosis of Alzheimer’s disease can be made. Our own 

data (chapter 4.2) also indicated that even when there are no cognitive symptoms of incipi-

ent Alzheimer’s disease, hippocampal and amygdalar atrophy on MRI predict a diagnosis of 

Alzheimer’s disease several years later. These observations all favor the idea that atrophy on 

MRI can indeed be considered a relatively early preclinical marker of Alzheimer’s disease. 

However, not every person with atrophy on MRI will later express clinical symptoms of Alz-

heimer’s disease. Some will die before they have the chance to develop clinical symptoms 

of Alzheimer’s disease. In others, a small brain volume on MRI may have been present since 

adulthood instead of being indicative of an underlying Alzheimer process. Finally, in several 

other diseases besides Alzheimer’s disease, atrophy can occur such as in temporal lobe epi-

lepsy (hippocampal/amygdalar atrophy)5 or anxiety (amygdalar atrophy).6 Therefore, when we 

identify a risk factor for brain atrophy on MRI, we have to be careful to interpret this as being 

a risk factor for the development of clinical Alzheimer’s disease without further evidence. In 

chapter 3.2, we found that estrogen receptor α polymorphisms were associated with hippo-
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campal and amygdalar atrophy on MRI yet not with dementia. Risk factors of atrophy should 

always be seen in light of evidence concerning these risk factors in Alzheimer’s disease. 

Studies on risk factors for atrophy should not replace research of risk factors for clinical Alz-

heimer’s disease but rather complement it in order to increase the understanding of what 

could elicit the preclinical brain changes.

Main findings

I will first discuss the main findings on putative causes of brain atrophy on MRI (chapter 2 and 

3). Then, I discuss the clinical correlates of brain atrophy on MRI (chapter 4). 

Causes of brain atrophy
Despite intensive research, the etiology of Alzheimer’s disease remains largely unclear. Two 

aspects of the disease complicate etiological research. First, once symptoms of Alzheimer’s 

disease are clearly evident, a long prodromal phase has been passed in which the brain pa-

thology has accumulated. Physiological factors present at time of diagnosis of Alzheimer’s 

disease, may not be the ones that effectuated the brain damage in the preclinical period. Sec-

ond, late-onset Alzheimer’s disease is pathologically a heterogeneous disease.7 The brain of 

a person who died with clinical symptoms of Alzheimer’s disease is often destructed by vari-

ous pathologies: besides neurofibrillary tangles and amyloid plaques in gray matter, lacunar 

infarcts and ischemia in the white matter are also frequently visible.8 Among individuals with 

clinical symptoms of Alzheimer’s disease, the extent to which each pathology contributed to 

symptoms may differ, as well as the key mechanisms underlying these brain changes. We 

took the approach of investigating risk factors of brain atrophy on MRI in vivo, which is evident 

in the preclinical phase, and reflects a relatively distinct pathology. By doing so, we hoped to 

further increase insight into which risk factors contribute to the development of Alzheimer’s 

disease. The risk factors we studied were not arbitrarily chosen but selected because of their 

putative role in Alzheimer’s disease. 

Vascular risk factors 

A great deal of research over the last decade has added to the idea that vascular factors 

contribute to the development of clinical Alzheimer’s disease in late life.9 Vascular factors 

can cause cerebrovascular damage, which enhances cognitive decline in a brain with exist-

ing Alzheimer pathology.10 However, cerebral ischemia can also upregulate amyloid-ß in the 

hippocampi of rats11 supporting a more direct link with Alzheimer’s disease. We investigated 

several vascular risk factors in relation to brain atrophy on MRI. 

A high blood pressure level is a well-recognized cardio- and cerebrovascular risk factor. The 
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relation between blood pressure and Alzheimer’s disease is less clear.12 Both mid-life high,13, 

14 and late-life low15 blood pressure levels have been associated with the risk of clinical Alzhei-

mer’s disease. In line with these earlier observations, we found that both a high and a low or 

decreasing blood pressure level were associated with medial temporal lobe and global brain 

atrophy (chapter 2.1 and 2.2). Cerebrovascular damage as quantified by the extent of white 

matter lesions on MRI coexisted with severe hippocampal and amygdalar atrophy. One possi-

bility is that cerebrovascular disease and brain atrophy have common shared risk factors such 

as high blood pressure levels. However, adjusting for blood pressure levels did not change 

this correlation. Possibly, microangiopathy of arterioles supplying the medial temporal lobe, 

visible as white matter lesions on MRI, may reduce cerebral blood flow leading to ischemia in 

the hippocampus and amygdala.16 The association between low blood pressure and atrophy 

on MRI as well as that between low blood pressure and Alzheimer’s disease is difficult to 

interpret. Several regions of the brain, including the hippocampus and amygdala, are involved 

in blood pressure regulation and brain atrophy due to an Alzheimer process could have re-

duced blood pressure levels.17, 18 Alternatively, a low blood pressure level in persons with a bad 

cerebral autoregulation could also cause cerebral ischemia, and thereby actually lead to the 

development of Alzheimer pathology.19 

A high plasma homocysteine level has recently been suggested as a risk factor for Alzheimer’s 

disease.20 In the Rotterdam Scan Study, we previously found that a high homocysteine level 

may cause cerebrovascular damage such as silent brain infarcts and white matter lesions,21 

pointing towards one potential explanation for the association between homocysteine levels 

and clinical Alzheimer’s disease. In chapter 2.3 we report that a high homocysteine level also 

has effects on both hippocampal and global brain atrophy, on MRI, which were not reduced 

when accounting for cerebrovascular disease. This is in line with in vitro studies showing toxic 

effects of homocysteine on cortical and hippocampal neurons.22, 23

A light-to-moderate alcohol intake may reduce cerebrovascular disease24 and vascular demen-

tia.25 Concerning the risk of Alzheimer’s disease, the effect of alcohol intake is less certain and 

a putative reduced risk may be confined to apolipoprotein (APOE) ε4 carriers who consume 

alcohol in light-to-moderate amounts.25 Since we have assessments on MRI of both cerebro-

vascular disease (white matter lesions and infarcts) and findings more specific of Alzheimer 

pathology (hippocampal and amygdalar atrophy) in the Rotterdam Scan Study, we decided 

to study this issue further. Our data in chapter 2.4 showed, as expected, a reduced effect of 

alcohol on cerebrovascular disease in general. There was only a beneficial effect of light-to-

moderate alcohol intake on hippocampal and amygdalar atrophy in APOE ε4 carriers further 

strengthening the idea that alcohol has an effect on the risk of Alzheimer’s disease only in 

APOE ε4 carriers.

One of the strongest risk factor for Alzheimer’s disease is carrying an APOE ε4 allele.26 The 
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neurobiologic mechanism through which the ε4 allele confers an increased risk of Alzheimer’s 

disease is not well understood. Some studies suggest that persons with the ε4 allele have 

increased cerebrovascular pathology27 but the bulk of evidence suggests that APOE ε4 leads 

to clinical disease mainly via the specific Alzheimer pathology.28 In vitro studies suggest that 

the ε4 protein isoform enhances aggregation of amyloid-ß and formation of neurofibrillary 

tangles. APOE ε4 carriers have higher numbers of neurofibrillary tangles and amyloid plaques 

in the hippocampus compared to non-ε4 carriers.29 Our finding that atrophy in the medial 

temporal lobe was more pronounced in ε4 carriers compared to persons with the APOE ε3ε3 

genotype gave further support to our assumption that atrophy on MRI reflects Alzheimer 

pathology (chapter 2.5). 

Taken together, we found several classical or more recently identified vascular risk factors 

to be associated to brain atrophy on MRI. This supports the idea that vascular factors could 

specifically trigger Alzheimer pathology in the preclinical phase. 

Endocrine risk factors

Besides vascular risk factors, other risk factors have been suggested to be involved in the 

development of Alzheimer’s disease. 

A substantial body of evidence in animal studies suggest that estrogens have antioxidative 

properties30 and beneficial effects on hippocampal neurons.31 Therefore in theory, a high 

estrogen level in the brain could reduce the risk of Alzheimer’s disease. On the other hand, 

observational data in humans are far from conclusive on the role of estrogens in Alzheimer’s 

disease. Before menopause, women have high endogenous estrogen levels and it could 

therefore be hypothesized that women with a long reproductive period, and hence a high 

lifetime cumulative exposure to estrogen, would have a lower risk of Alzheimer’s disease. 

However, in the Rotterdam Study it was found that their risk to develop Alzheimer’s disease 

was higher compared to those with shorter reproductive periods.32 After menopause, 

endogenous estrogen levels drop and in older women with a relatively high endogenous 

estradiol level the risk to develop dementia was highest.33 In line with this finding, we showed 

in chapter 3.1 that higher endogenous levels of estrogens are not associated with a larger 

volume of the hippocampus on MRI or better memory performance. Endogenous levels after 

menopause are, however, far below levels obtained after estrogen replacement therapy and 

it could be that “supranatural” estrogen levels protect against Alzheimer’s disease. Recent 

trials on estrogen replacement therapy in preventing or slowing of Alzheimer’s disease do 

not support this idea.34, 35 In fact, elderly women who receive a combination of estrogen and 

progestin have a two times increased risk to develop Alzheimer’s disease compared to women 

on placebo.34 A similar kind of discrepancy between findings of basic sciences (estrogen is 

protective)36 and randomized trials (estrogen is harmful)37 has been observed in cardiovascular 
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research. In this field it has been suggested that genetic variations in the gene encoding 

for estrogen receptor α render some women more susceptible to the beneficial or harmful 

effects of estrogen.38 Effects of estrogen replacement therapy on lipid profile are different 

across genotype39 and polymorphisms in the estrogen receptor α are associated with risk of 

cardiovascular disease.40 We found that polymorphisms in the estrogen receptor α gene are 

not associated with the risk of Alzheimer’s disease (chapter 3.2). This makes it less plausible, 

though not impossible, that estrogen replacement therapy will have a beneficial effect on risk 

of dementia in women with a certain variation in the estrogen receptor α gene.

Other endocrine factors that we examined were diabetes mellitus and insulin resistance (chap-

ter 3.3). Although these factors could also be categorized as vascular risk factors, evidence in 

Alzheimer research suggests that it is not the vascular risk component of diabetes mellitus 

and insulin resistance that causes the increased risk of Alzheimer’s disease. Instead, a high 

glucose level or altered insulin signaling could have direct effects on the development of amy-

loid plaques and neurofibrillary tangles in the brain.41, 42 In line with this idea, we showed that 

persons with diabetes mellitus have increased atrophy of the hippocampus and amygdala on 

MRI. Of interest, the relation between diabetes mellitus and cerebrovascular disease was not 

strong and did not account for the associations with atrophy. The mechanisms that underlie 

the associations between diabetes mellitus and atrophy could be manifold. First, advanced 

glycation endproducts, of which persons with diabetes have increased levels, could trigger 

the aggregation of amyloid proteins into amyloid plaques.41 Second, glycation of the microtu-

bule associated protein-tau could lead to formation of neurofibrillary tangles.43 With respect to 

insulin, evidence from several lines of research has supported links with Alzheimer’s disease. 

Insulin receptors are densely distributed in the brain44 and once activated lead to a cascade of 

events that promote neuronal survival and prevent tau phosphorylation.42 Dysfunction of this 

pathway may therefore lead to Alzheimer’s disease and genetic variations in the genes en-

coding for proteins in this insulin pathway have been associated to Alzheimer’s disease.42, 44, 45 

Plasma insulin levels may secondarily increase to compensate for this loss of receptor func-

tion. Furthermore, the insulin-degrading enzyme (IDE) is present in the brain and, in addition 

to insulin, also degrades amyloid proteins, thereby preventing plaque formation. Mice with 

hypofunction of this enzyme have more amyloid plaques and high insulin plasma levels46 and 

variations in the gene encoding IDE have been found in patients with Alzheimer’s disease.47 In 

our study, interestingly, we found a specific effect of insulin resistance on amygdalar atrophy 

on MRI but not on hippocampal atrophy.
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Specificity of measures of brain atrophy on MRI

We investigated putative causes of several different measures of brain atrophy on MRI (hip-

pocampal, amygdalar, cortical and subcortical brain atrophy). Sometimes we found that a risk 

factor was specifically associated with one brain atrophy measure while not with the other 

atrophy measures. The APOE ε4 allele for example was associated with hippocampal and 

amygdalar atrophy yet not with global brain atrophy. One possible source for different as-

sociations may be that global brain atrophy was less precisely measured (semi-quantitative) 

than the hippocampus and amygdala (volumetric). However, a more likely explanation is that 

anatomically different structures are under study or that the MRI measures have different 

pathological substrates. 

Though frequently observed in Alzheimer patients,48 there is no firmly defined pathological 

basis of global brain atrophy on MRI, which can be divided in cortical (sulcal widening) and 

subcortical (ventricular enlargement) atrophy. Although the name “cortical” atrophy would 

imply neuronal loss, there is only little neuronal loss with aging.49 Sulcal widening may be the 

result of reduction of myelinated nerve fibers underneath the cortex in the white matter.49 

The nerve fibers that are lost presumably originate from the projecting pyramidal cells in the 

cortex. However, if there is little loss of cortical neurons, then the projecting myelinated ax-

ons must degenerate without the loss of the parental cell body. Subcortical atrophy indicates 

ventricular enlargement at the expense of white matter around the ventricles (hydrocephalus 

ex vacuo). Volumetric MRI studies have shown that brain white matter volume decreases 

with age50 most likely due to loss of myelin with relative preservation of axons. Given that we 

do not have a pathological validation of global brain atrophy on MRI, it remains uncertain on 

which places (cortex or white matter) risk factors act. High blood pressure or homocysteine 

levels could for example induce neurofibrillary tangles and shrinkage of neurons in the cor-

tex. However, effects such as ischemia in the white matter regions and loss of white matter 

volume could also be involved in the associations with global brain atrophy on MRI. Detailed 

segmentation of the brain in gray matter, white matter and cerebrospinal fluid volume and 

separately investigating the correlations with vascular factors could resolve this problem.

Compared to global brain atrophy on MRI, there is a stronger histological validation for hip-

pocampal and amygdalar atrophy on MRI. Volumes of these structures on MRI are strongly 

positively correlated with neuronal count,51, 52 and negatively with the extent of the specific 

Alzheimer pathology, i.e. neurofibrillary tangles and amyloid plaques.53 The risk factors that we 

found for hippocampal and amygdalar atrophy act therefore specifically on neurons of these 

brain structures or on the development of Alzheimer pathology for which these structures are 

highly susceptible. From the risk factors we studied blood pressure levels, homocysteine, 

alcohol intake, APOE gene, estrogen receptor α polymorphism and diabetes mellitus were 

more or less similarly associated with hippocampal and amygdalar atrophy on MRI. A notable 
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difference was insulin resistance, which was strongly associated with amygdalar atrophy but 

absolutely not with hippocampal atrophy on MRI (chapter 3.3). A recent study also found no 

association between insulin resistance and hippocampal volumes on MRI54 but that study 

did not assess the amygdala. The biochemical properties of the Alzheimer pathology are, 

to my knowledge, similar in both structures and develop approximately at the same time in 

the process of Alzheimer’s disease.55 This suggests that differences between neurons of the 

hippocampus and amygdala result in differential effects of insulin resistance. The density of 

insulin receptors on hippocampal and amygdalar neurons are slightly different with the hip-

pocampus having a higher density.56 Possibly, the hippocampus is less sensitive for effects of 

insulin resistance than the amygdala due to its higher receptor density.

Clinical correlates of brain atrophy
The work we described on risk factors of brain atrophy on MRI started based on the belief 

that brain atrophy on MRI can be observed early in the process of Alzheimer’s disease. To 

investigate the functional significance of brain atrophy on MRI in the preclinical period, we 

addressed the relation between brain atrophy and memory performance since memory im-

pairment is the first preclinical neuropsychological sign of Alzheimer’s disease.57 Additionally, 

we quantified the association between brain atrophy on MRI and risk of dementia and risk of 

depression.

In chapter 4.1 we report that hippocampal atrophy on MRI of non-demented elderly correlates 

with worse memory performance. Persons with smaller volumes of the hippocampus on 

MRI, particularly of the head portion, performed worse on a verbal memory task. Since 1957, 

the medial temporal lobe has been identified to play an important role in memory function. 

Selective memory impairment was described after bilateral surgical removal of the medial 

temporal lobe in patient H.M.58 However, the medial temporal lobe is a large region that in-

cludes the hippocampus, the amygdala and adjacent cortical areas. The precise contribution 

of each of these structures in memory function is just starting to be disentangled. More-

over, even within a structure, there may exist functional segregation. Response to novelty 

is, for example, mapped on the head portion of the hippocampus59 whereas spatial memory 

is probably located in the posterior hippocampus.60 The early observable verbal memory de-

cline in incipient Alzheimer’s disease is by most researchers attributed to the accumulation 

of Alzheimer pathology in the hippocampus.61 Damage to the hippocampus in this stage may 

go hand-in-hand with complaints of worse memory function and low memory performance. 

However, whether a person complains or not will also depend on personality traits or social 

factors. In chapter 4.2 we show that hippocampal atrophy on MRI predicts dementia even 

when a person did not report memory complaints or had a lower than average memory 

performance. This suggests that although the Alzheimer process already accumulates in the 
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hippocampus and can be detectable as atrophy on MRI, persons do not necessarily com-

plain of bad memory or perform worse on memory tests. We found that amygdalar atrophy 

on MRI also predicts dementia. It is unclear whether in the preclinical phase of Alzheimer’s 

disease amygdalar atrophy has functional correlates. Experiments in monkeys demonstrated 

that amygdalar damage does not impair memory.62 In line, we found no pronounced amy-

gdala atrophy in persons with worse verbal memory (chapter 2.5). The amygdala consists of 

several nuclei which all could have separate functions but, in general, the amygdala functions 

in emotional information processing and fear conditioning.63 In Japanese Alzheimer patients, 

worse memory of a traumatic event arising emotion (earthquake) was stronger correlated to 

amygdalar atrophy than to hippocampal atrophy on MRI.64 Other studies showed increased 

anxiety in Alzheimer patients, which could possibly be contributed to damage of the amygdala 

by the Alzheimer process.65 

Clinical studies have shown atrophy of the hippocampus, the frontal lobe and sometimes 

amygdala in patients with depression compared to healthy controls.66 Most consistently, this 

is observed in patients with a long duration of depression. The observation could be caused 

by hypercortisolemia which is neurotoxic and is present in patients with major depression. 

However, as the hippocampus, amygdala and frontal lobe, as part of the limbic system, are 

involved in emotion regulation it may also be that the presence of atrophy poses people at 

risk of mood disorders or a depression. We studied this latter hypothesis by investigating the 

longitudinal relation between atrophy and depression in persons who were non-depressed at 

baseline. While both hippocampal and amygdalar atrophy were not associated with incident 

depression, frontal atrophy was. These data make it unlikely that atrophy of the hippocampus 

and amygdala precedes a depression in late-life. In line, a recent clinical study showed no hip-

pocampal atrophy in persons who entered the hospital with a first episode of depression but 

hippocampal atrophy was prominent in persons with multiple episodes of depression.67 The 

frontal lobe, in particular the orbitofrontal cortex (gyrus rectus), has a connection to the limbic 

system and reductions in the gray matter of this area are observed in persons with depres-

sion.68 What actually leads to this gray matter loss is unknown. Most researchers currently 

adhere to the “vascular depression hypothesis” of late life depression, stating that brain in-

farcts and white matter damage destruct brain pathways important for normal mood regula-

tion. Hyperintensities in the basal ganglia coexist with a smaller orbitofrontal cortex volume 

suggesting a common, possibly vascular pathway of both pathologies.68 
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Implications

Our findings were based on persons dwelling in the community who as a group are healthier 

than patients seen in clinical practice. However, I do think that our findings could have clinical 

implications. We showed that atrophy on MRI of the hippocampus and amygdala is a strong 

predictor of dementia independent of neuropsychological performance. In line, clinical studies 

in patients with mild cognitive impairment previously showed that atrophy of the hippocam-

pus on MRI could predict progression to dementia.4 In case of finding a high degree of atro-

phy on MRI as of yet there is no therapeutical intervention available. However, these patients 

and caregivers can be advised and frequently followed. On the other hand, when finding no 

atrophy, patients may be reassured that their risk of progressing to dementia is low.4 Assess-

ing MRI volumes by manual outlining of structures will be too labor intensive to implement 

in a normal diagnostic work-up. Visually rating of atrophy may be a good alternative69 or auto-

mated segmentation methods70 can be used. 

We identified several risk factors for brain atrophy including vascular risk factors. Currently, it 

is not common knowledge that brain atrophy on MRI could have vascular determinants. Most 

frequently, brain atrophy on MRI is regarded as being normal with ageing and only when 

extensive be reported as indicative of neurodegeneration. Our findings suggest that persons 

with brain atrophy on MRI should at least be screened for potentially treatable risk factors 

such as high blood pressure level, diabetes mellitus and possibly high plasma homocysteine 

levels. It remains however to be demonstrated in clinical trials that treatment of these risk 

factors reduces the incidence of cognitive decline or dementia. 

Suggestions for future research

The research described in this thesis was done in the framework of etiological research on 

Alzheimer’s disease. The approach we took to investigate putative causes of a preclinical 

biomarker of Alzheimer’s disease, in our case brain atrophy on MRI, has not been frequently 

pursued before. I think that this approach deserves further exploration. The following ques-

tions come to mind: which study sample to use? What biomarkers to use? What to do when 

we have identified a high-risk group?

Particular population-based samples could yield valuable information on the earliest preclini-

cal changes. Clinical study samples are based on people with cognitive impairment and, as 

such, are further along the process of dementia than persons dwelling in the community. 

Because twenty-five percent of persons at age of 40 already have some neurofibrillary tan-

gles in the brain,71 it is important to include persons in this young age range. A drawback of 

including middle-aged persons is that the incidence of dementia in this age group is very low. 
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Therefore, in a longitudinal setting, repeated measures of neuropsychological tests should be 

administered to detect subtle cognitive decline. 

The biomarkers tested in the preclinical period can be manifold. Peripheral markers such as 

plasma amyloid-ß levels72 or inflammatory markers73 should be examined. Brain imaging could 

identify specific brain markers. We only addressed hippocampal, amygdalar and generalized 

brain atrophy on MRI whereas brain structures such as the entorhinal cortex may be affected 

by Alzheimer pathology even earlier.55 Before jumping into assessing this structure by manual 

outlining, it will be more time-efficient to use automated protocols to label the entire brain.74 

In this way, we might also find other brain regions that previously have been unnoticed in 

the early development of Alzheimer’s disease. For this purpose, high-resolution 3D MRI se-

quences should be administered on which, besides gray matter, also white matter lesions 

and brain infarcts can be quantified. Currently, it is beyond the resolution of MRI to visualize 

amyloid plaques or tangles and we merely see the consequences of these pathologies in 

terms of macroscopic volumes loss. Promising results have been made in postmortem tis-

sue with high field strength MRI and binding molecules to detect amyloid plaques.75 Another 

interesting imaging tool is functional MRI (fMRI) which visualizes functional changes in the 

brain. In ‘at-risk’ persons, differences in regional blood flow to brain regions during cognitive 

testing have been reported.76 However, the development of paradigms used for fMRI is dif-

ficult and results will depend on how sensitive these paradigms are for specific changes in 

the preclinical phase. 

To the extent that preclinical biomarkers predict Alzheimer’s disease, they can be used as spe-

cific outcome measures in etiologic research. We found several environmental and genetic 

factors to be associated with brain atrophy on MRI. An interesting lead to further explore 

is the role of insulin metabolism in the etiology of Alzheimer’s disease. In our study, insulin 

resistance was specifically associated with amygdalar atrophy on MRI but not with hippocam-

pal atrophy or cerebrovascular disease. This suggests that Alzheimer patients with insulin re-

sistance77 might be a certain subgroup of patients with particularly severe amygdalar atrophy 

with less pronounced hippocampal atrophy or cerebrovascular disease. Genetic factors likely 

play a large role in the development of Alzheimer’s disease. In interpreting genetic associa-

tions with brain volumes at late life, it must be kept in mind that identified genetic variations 

are present since conception. Some genetic factors may be involved in the development of 

the brain yet not in the etiology of Alzheimer’s disease. The genetic variation in the estrogen 

receptor α polymorphism in association with amygdalar volumes on MRI may be examined in 

young populations, as this variation was not associated with Alzheimer’s disease. 

If we can reliably identify the preclinical period by a combination of biomarkers and neu-

ropsychological tests, disease-modifying drugs, currently under development, could be tried 

in these people. Biomarkers could help in tracing the effects of treatment. Recently, a ran-
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domized trial showed less pronounced hippocampal volume reduction on MRI over time in 

dementia patients using donepezil.78 Before disease-modifying drugs are fully developed, clin-

ical trials may study the effect of interventions in vascular risk profile in certain risk groups. 
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Alzheimer’s disease is a common disorder in the elderly that is clinically characterized by an in-

sidious onset of memory decline followed by progressive decline in other cognitive domains. 

The cause of the disease is still largely unknown. From pathological studies it has become 

clear that damage to the brain occurs long before the onset of symptoms. Therefore, the em-

phasis of the studies described in this thesis was on brain changes during this preclinical pe-

riod as visualized with magnetic resonance imaging (MRI) of the brain. The studies performed 

are part of the Rotterdam Scan Study, a population-based study among almost 1100 elderly 

who had no symptoms of dementia at time of MRI. On the MRI scans, we visualized the 

extent of brain atrophy, both generalized brain atrophy and of the hippocampus and amygdala, 

structures highly affected by Alzheimer pathology early in the disease. By establishing deter-

minants of brain atrophy, we hoped to provide some clues on the pathogenesis of Alzheimer’s 

disease. Addtionally, we studied whether brain atrophy on MRI is clinically characterized by a 

decline in memory function, and whether it indicates an increased risk of developing clinically 

evident Alzheimer’s disease and depression. 

Chapter 2.1 and 2.2 illustrate the relationship between blood pressure and brain atrophy 

on MRI, both generalized atrophy and regional atrophy of the hippocampus and amygdala. 

Either a high or low diastolic blood pressure level was associated with increased brain atro-

phy. The biological mechanisms for these associations are still unknown, we provide some 

possible explanations. Chapter 2.3 focuses on plasma homocysteine levels, as high levels 

of this amino acid have been associated with clinical Alzheimer’s disease. Elderly with high 

plasma homocysteine levels were found to have more hippocampal and global brain atrophy 

on MRI. Chapter 2.4 addresses the association between alcohol intake and both cerebro-

vascular disease and hippocampal and amygdalar atrophy on MRI. Light-to-moderate alcohol 

consumers have a lower risk of dementia compared to abstainers, particularly of vascular 

dementia. In accordance, we found a lower prevalence of cerebrovascular disease on MRI in 

light-to-moderate alcohol consumers compared to abstainers. Overall there was no effect of 

the degree of alcohol intake on hippocampal and amygdalar atrophy on MRI. However, within 

apolipoprotein E (APOE) ε4 carriers, light-to-moderate alcohol consumers had less atrophy 

compared to abstainers. This finding is in agreement with recent reports that APOE ε4 carri-

ers who consume light-to-moderate amounts of alcohol have a reduced risk of Alzheimer’s 

disease compared to ε4 carriers who abstain. In chapter 2.5, we studied the effect of the 

APOE genotype on degree of brain atrophy on MRI. Individuals with the ε4 allele, which is the 

risk allele in Alzheimer’s disease, had more hippocampal and amygdalar atrophy but not more 

global brain atrophy compared to persons with the common ε3ε3 genotype. 

In chapter 3.1, a study on plasma estradiol levels and hippocampal atrophy on MRI and mem-

ory performance is described. Based on animal studies showing beneficial effects of estrogen 

on hippocampal neurons, we formed the hypothesis that higher estradiol levels would be 
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associated with less hippocampal atrophy and better memory performance. This hypothesis 

was however not confirmed. The effect of polymorphisms in the estrogen receptor α gene 

on atrophy and risk of dementia is investigated in chapter 3.2. While the polymorphism was 

not associated with the risk of dementia, we found that women with certain genetic varia-

tions had smaller amygdalar volume on MRI. Chapter 3.3 reports on the association between 

diabetes mellitus, insulin resistance and atrophy of the hippocampus and amygdala on MRI. 

Persons with diabetes mellitus had more atrophy on MRI compared to persons without dia-

betes mellitus. Furthermore, in non-diabetic persons, insulin resistance was associated with 

amygdalar atrophy on MRI.

Chapter 4.1 provides evidence that persons with more hippocampal atrophy on MRI perform 

worse on memory performance tasks. In particular, smaller hippocampal head volume was 

associated with decreased performance on a verbal learning task. In chapter 4.2 we validated 

in our sample the assumption that atrophy on MRI could be observed in the preclinical period 

of Alzheimer’s disease. Atrophy on MRI of either the hippocampus or amygdala predicted the 

development of clinical dementia within six years, even when persons were cognitively intact 

at time of MRI. In contrast, in chapter 4.3 we show that hippocampal and amygdalar atrophy 

do not predict depression. However, frontal atrophy was associated with an increased risk of 

depression.

Finally, in chapter 5, methodological issues, the main findings and their implications, and sug-

gestions for further research are discussed. 
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De ziekte van Alzheimer is een veelvoorkomende ziekte in ouderen. Patiënten met de ziekte 

van Alzheimer merken een sluipende achteruitgang in geheugenfunctie waarna verslechtering 

van andere cognitieve functies volgt. De oorzaak van de ziekte is nog grotendeels onbekend. 

Uit pathologische studies is gebleken dat schade aan de hersenen reeds lang voor het begin 

van symptomen aanwezig is. We legden daarom in dit proefschrift de nadruk op veranderingen 

in de hersenen tijdens deze preklinische periode, zichtbaar gemaakt met behulp van “mag-

netic resonance imaging” (MRI) van de hersenen. De studies in dit proefschrift maken deel uit 

van de Rotterdam Scan Study, een studie onder bijna 1100 ouderen die ten tijde van de MRI 

geen klinische symptomen van dementie hadden. Op de MRI kwantificeerden we zowel ge-

generaliseerde hersenatrofie, als atrofie van de hippocampus en amygdala, hersenstructuren 

die vroeg in het beloop van de ziekte van Alzheimer zijn aangedaan. Door het vinden van risi-

cofactoren voor hersenatrofie, hoopten wij meer inzicht te krijgen in de ontstaanswijze van de 

ziekte van Alzheimer. Daarnaast bestudeerden we de vraag of hersenatrofie op MRI klinisch 

gekenmerkt wordt door geheugenachteruitgang, en of het een verhoogd risico op het krijgen 

van klinische symptomen van de ziekte van Alzheimer of een depressie aangeeft. 

Hoofdstuk 2.1 en 2.2 illustreren het verband tussen bloeddruk en hersenatrofie, zowel ge-

generaliseerde atrofie als specifieke atrofie van de hippocampus en amygdala. Een hoge- en 

een lage diastolische bloeddruk stonden beide in verband met meer hersenatrofie. De pre-

cieze mechanismen van deze associaties zijn nog onbekend, we geven enkele mogelijke ver-

klaringen. Hoofdstuk 2.3 bestudeert het plasma homocysteine gehalte aangezien een hoge 

concentratie van dit aminozuur mogelijk een verhoogd risico van de ziekte van Alzheimer 

geeft. Ouderen met hogere plasma homocysteine concentraties hebben meer hippocampus 

en gegeneraliseerde hersenatrofie op MRI. Hoofdstuk 2.4 kijkt naar de associatie tussen 

alcohol consumptie en zowel cerebrovasculaire schade als hippocampus en amygdala atrofie. 

Ouderen die licht tot matig alcohol consumeren hebben een lager risico van dementie in 

vergelijking met geheel onthouders, in het bijzonder van vasculaire dementie. In dit kader 

vonden wij eveneens minder cerebrovasculaire schade op MRI in mensen die licht tot matig 

alcohol consumeren. Er was geen verband tussen alcohol consumptie en ernst van hippo-

campus of amygdala atrofie op MRI. Echter, in mensen die het ε4 allel van het apolipopro-

tein E (APOE) gen hebben, is lichte tot matige alcohol consumptie geassocieerd met minder 

atrofie. In hoofdstuk 2.5 bestuderen we het effect van het APOE genotype op de mate van 

hersenatrofie op MRI. Ouderen met het ε4 allel, het risico allel in de ziekte van Alzheimer, 

hebben meer hippocampus en amygdala atrofie, maar niet meer gegeneraliseerde atrofie, in 

vergelijking met ouderen met het ε3ε3 genotype. 

In hoofdstuk 3.1 beschrijven we een studie naar het verband tussen plasma oestrogenen 

concentratie, hippocampus atrofie en geheugen functie. Dierexperimenteel onderzoek heeft 

veelal positieve effecten van oestrogenen op neuronen in de hippocampus laten zien, dus 
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we formuleerden de hypothese dat ouderen met hogere plasma oestrogenen concentraties 

minder hippocampus atrofie zouden hebben, en beter zouden presteren op geheugen taken. 

Deze hypothese konden we echter niet bevestigen. Het effect van een genetische variatie in 

het gen van de oestrogeenreceptor α op atrofie en risico van dementie werd onderzocht in 

hoofdstuk 3.2. Alhoewel deze genetische variant niet met het risico van dementie in verband 

staat, hebben vrouwen met een bepaalde genetische variatie kleinere amygdala volumes. 

Hoofdstuk 3.3 laat het verband zien tussen diabetes mellitus, insuline resistentie en hip-

pocampus atrofie op MRI. Ouderen met diabetes mellitus hebben meer atrofie op MRI in 

vergelijking met ouderen zonder diabetes mellitus. In personen zonder diabetes mellitus, is 

insuline resistentie een risico factor voor amygdala atrofie.

Hoofdstuk 4.1 laat zien dat ouderen met meer hippocampus atrofie op MRI slechter pres-

teren op geheugen taken. Specifiek atrofie van het “head” gedeelte van de hippocampus 

staat in verband met verminderde prestaties op een verbale geheugen taak. In hoofdstuk 4.2 

bestudeerden wij onze assumptie dat atrofie op MRI tijdens de preklinische periode van de 

ziekte van Alzheimer aanwezig is. Atrofie van de hippocampus of amygdala op MRI voorspelt 

de ontwikkeling van dementie zes jaar later, zelfs wanneer ouderen ten tijde van de MRI cog-

nitief goed functioneren. In hoofdstuk 4.3 tonen wij aan dat hippocampus of amygdala atrofie 

geen voorspeller is van een depressie. Echter, de aanwezigheid van frontale atrofie op MRI 

geeft een verhoogd risico van depressie aan.

In hoofdstuk 5 worden enkele methodologische aspecten, de belangrijkste bevindingen en 

hun implicaties, en suggesties voor verder onderzoek besproken.  
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